182 resultados para 660199 Energy transformation not elsewhere classified


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental aerodynamic studies of the flows around new aerocapture spacecraft configurations are presently being done in the superorbital expansion tubes at The University of Queensland. Short duration flows at speeds of 10--13 km/s are produced in the expansion tube facility and are then applied to the model spacecraft. Although high-temperature effects, such as molecular dissociation, have long been a part of the computational modelling of the expansion tube flows for speeds below 10 km/s, radiation may now be a significant mechanism of energy transfer within the shock layer on the model. This paper will study the coupling of radiation energy transport for an optically thin gas to the flow dynamics in order to obtain accurate predictions of thermal loads on the spacecraft. The results show that the effect of radiation on the flowfields of subscale models for expansion tube experiments can be assessed by measurements of total heat transfer and radiative heat transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global concerns over the effects of current carbon dioxide (CO2) emissions have lead to extensive research on the use of hydrogen as a potential energy carrier for a lower emissions society. Hydrogen can be produced from both fossil and renewable energy sources. The hydrogen economy, in which hydrogen will be a carrier of energy from renewable sources, is a long-term development and any increasing demand for hydrogen will probably be covered initially from fossil sources. Technologies for hydrogen generation from renewable energies are being explored, whereas technologies for hydrogen production from fossil fuels have to a certain extent reached maturity. This paper addresses the major hydrogen generation processes and utilisation technology (fuel cells) currently available for the move from a fossil fuelsbased economy to a hydrogen economy. In particular, it illustrates the applicability of different hydrogen sources using Australia as an example.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present here a tractable theory of transport of simple fluids in cylindrical nanopores, which is applicable over a wide range of densities and pore sizes. In the Henry law low-density region the theory considers the trajectories of molecules oscillating between diffuse wall collisions, while at higher densities beyond this region the contribution from viscous flow becomes significant and is included through our recent approach utilizing a local average density model. The model is validated by means of equilibrium as well nonequilibrium molecular dynamics simulations of supercritical methane transport in cylindrical silica pores over a wide range of temperature, density, and pore size. The model for the Henry law region is exact and found to yield an excellent match with simulations at all conditions, including the single-file region of very small pore size where it is shown to provide the density-independent collective transport coefficient. It is also shown that in the absence of dispersive interactions the model reduces to the classical Knudsen result, but in the presence of such interactions the latter model drastically overpredicts the transport coefficient. For larger micropores beyond the single-file region the transport coefficient is reduced at high density because of intermolecular interactions and hindrance to particle crossings leading to a large decrease in surface slip that is not well represented by the model. However, for mesopores the transport coefficient increases monotonically with density, over the range studied, and is very well predicted by the theory, though at very high density the contribution from surface slip is slightly overpredicted. It is also seen that the concept of activated diffusion, commonly associated with diffusion in small pores, is fundamentally invalid for smooth pores, and the apparent activation energy is not simply related to the minimum pore potential or the adsorption energy as generally assumed. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesoporous Ni(OH)(2) is synthesized using sodium dodecyl sulfate as a template and urea as a hydrolysis-controlling agent. Mesoporous NiO with a centralized pore-size distribution is obtained by calcining Ni(OH)(2) at different temperatures. The BET specific surface area reaches 477.7 m(2) g(-1) for NiO calcined at 250 degreesC. Structure characterizations indicate a good mesoporous structure for the nickel oxide samples. Cyclic voltammetry shows the NiO to have good capacitive behaviour due to its unique mesoporous structure when using a large amount of NiO to fabricate the electrode. Compared with NiO prepared by dip-coating and cathodic precipitation methods, mesoporous NiO with a controlled pore structure can be used in much larger amounts to fabricate electrodes and still maintain a high specific capacitance and good capacitive behaviour. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-quality nanometer thick ultramicroporous membranes were prepared from silica sol-gel processes and tested for the permeation of binary gas mixtures of He, H-2, CO2, and CH4 across different temperature and partial pressure regimens. Pore size distribution by molecular probing showed that the majority of pore sizes had dimensions below 2.9 Angstrom. In 50:50 binary mixtures, the fluxes of gases increased as a function of temperature, indicating an activated transport mechanism. The ultramicroporous membranes showed high selectivities at 150 degreesC for He/CO2 (30), He/CH4 (93), H-2/CO2 (10), and H-2/CH4 (9) with lower selectivities for CO2/CH4 (5). High activation energies (E-a) were observed for the permeance of 50:50 binary mixtures containing He and H-2 of 22.1-27.5 and 17.6-23.1 kJ.mol(-1), respectively. The E-a for the permeance of the total mixture approached the E-a for the permeance of the molecule with the smaller kinetic diameter (He or H-2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogen adsorption in alkali-doped carbon materials is investigated theoretically. Our calculations show that hydrogen molecules can be physically adsorbed on alkali-doped graphite at 0 K but such an adsorption is thermodynamically unfavourable. The binding energy of hydrogen adsorption decreases significantly with the increase in temperature and becomes nearly zero at ambient temperature. We suggest that it may be unlikely to observe any hydrogen uptake in alkali-doped carbon materials at or above ambient temperature in the TGA (thermogravimetric) system, the previously reported hydrogen uptake in alkali-doped carbon materials was caused by either uncyclable chemisorbed hydrogen on the defects of carbon (defects were produced by repeated heat treatment) and/or moisture adsorption. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comprehensive study has been conducted to compare the adsorptions of alkali metals (including Li, Na, and K) on the basal plane of graphite by using molecular orbital theory calculations. All three metal atoms prefer to be adsorbed on the middle hollow site above a hexagonal aromatic ring. A novel phenomenon was observed, that is, Na, instead of Li or K, is the weakest among the three types of metal atoms in adsorption. The reason is that the SOMO (single occupied molecular orbital) of the Na atom is exactly at the middle point between the HOMO and the LUMO of the graphite layer in energy level. As a result, the SOMO of Na cannot form a stable interaction with either the HOMO or the LUMO of the graphite. On the other hand, the SOMO of Li and K can form a relatively stable interaction with either the HOMO or the LUMO of graphite. Why Li has a relatively stronger adsorption than K on graphite has also been interpreted on the basis of their molecular-orbital energy levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we assess the pathways for environmental improvement by the coal utilization industry for power generation in Australia. In terms of resources, our findings show that coal is a long term resource of concern as coal reserves are likely to last for the next 500 years or more. However, our analysis indicates that evaporation losses of water in power generation will approach 1000 Gl (gigalitres) per year, equivalent to a consumption of half of the Australian residential population. As Australia is the second driest continent on earth, water consumption by power generators is a resource of immediate concern with regards to sustainability. We also show that coal will continue to play a major role in energy generation in Australia and, hence, there is a need to employ new technologies that can minimize environmental impacts. The major technologies to reduce impacts to air, water and soils are addressed. Of major interest, there is a major potential for developing sequestration processes in Australia, in particular by enhanced coal bed methane (ECBM) recovery at the Bowen Basin, South Sydney Basin and Gunnedah Basin. Having said that, CO2 capture technologies require further development to support any sequestration processes in order to comply with the Kyoto Protocol. Current power generation cycles are thermodynamic limited, with 35-40% efficiencies. To move to a high efficiency cycle, it is required to change technologies of which integrated gasification combined cycle plus fuel cell is the most promising, with efficiencies expected to reach 60-65%. However, risks of moving towards an unproven technology means that power generators are likely to continue to use pulverized fuel technologies, aiming at incremental efficiency improvements (business as usual). As a big picture pathway, power generators are likely to play an increasing role in regional development; in particular EcoParks and reclaiming saline water for treatment as pressures to access fresh water supplies will significantly increase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the area of dry particle breakage, Discrete Element Method (DEM) simulations have been widely used to analyse the sensitivity of various physical parameters to the behaviour of agglomerates during breakage. This paper looks at the effect of agglomerate shape and structure on the mechanisms and extent of breakage of dry agglomerates under compressive load using DEM simulations. In the simulations, a spherical-shaped agglomerate produced within the DEM code is compared with an irregularly shaped agglomerate, whose structure is that of an actual granule that was characterised with X-ray microtomography (muCT). Both agglomerates have identical particle size distribution, coordination number and surface energy values, with only the agglomerate shape and structure differing between the two. The work here details the breakage behaviour with a number of traditional DEM output parameters (i.e., contact/cluster distributions) with showing vastly different behaviour between the two agglomerates. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In liquid-liquid dispersion systems, the dynamic change of the interfacial properties between the two immiscible liquids plays an important role in both the emulsification process and emulsion stabilization. In this paper, experimentally measured dynamic interfacial tensions of 1-chlorobutane in the aqueous solutions of various random copolymers of polyvinyl acetate and polyvinyl alcohol (PVAA) are presented. Theoretical analyses on these results suggest that the adsorption of the polymer molecules is controlled neither by the bulk diffusion process nor the activation energy barrier for the adsorption but the conformation of polymer molecules. Based on the concept of critical concentration of condensation for polymer adsorption, as well as the observation that the rate at which the dynamic interfacial tension changes does not correlate to the PVAA's ability to stabilize a single drop, it is postulated that the main stabilization mechanism for the PVAAs is by steric hindrance, not the Gibbs-Marangoni effect offered by the small molecule surfactants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent summary report of a Department of Energy Workshop on Plant Systems Biology (P.V. Minorsky [2003] Plant Physiol 132: 404-409) offered a welcomed advocacy for systems analysis as essential in understanding plant development, growth, and production. The goal of the Workshop was to consider methods for relating the results of molecular research to real-world challenges in plant production for increased food supplies, alternative energy sources, and environmental improvement. The rather surprising feature of this report, however, was that the Workshop largely overlooked the rich history of plant systems analysis extending over nearly 40 years (Sinclair and Seligman, 1996) that has considered exactly those challenges targeted by the Workshop. Past systems research has explored and incorporated biochemical and physiological knowledge into plant simulation models from a number of perspectives. The research has resulted in considerable understanding and insight about how to simulate plant systems and the relative contribution of various factors in influencing plant production. These past activities have contributed directly to research focused on solving the problems of increasing biomass production and crop yields. These modeling approaches are also now providing an avenue to enhance integration of molecular genetic technologies in plant improvement (Hammer et al., 2002).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four mine waste beach longitudinal profile equations are compared theoretically and in statistical analyses of profile data from 64 field and laboratory beaches formed by mine tailings, co-disposed coal mine wastes, and sand. All four equations fit the profile data well. The best performing equation both accounts for particle sorting and satisfies hydraulic constraints, and the combination of assumptions underlying it is considered to best represent the processes occurring on mine waste beaches. Combining these assumptions with the Lacey normal equation leads to a variant of the Manning resistance equation. Features that it is desirable to incorporate in theoretical and numerical models of mine waste beaches are listed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Six Bos taurus (Hereford) steers (body weight 324 22 kg) were used in a 45-day study with a replicated 3 x 3 Latin-square design. Three treatments [ad libitum feeding (ADLIB); limit feeding, 85% of ad libitum (LIMIT); bunk management feeding where steers were only given access to feed from 1600 to 0800 hours the following day (BUNK)] were imposed over 3 periods, with 2 steers assigned to each treatment in each period. Cattle were managed in a temperature-controlled metabolism unit and were exposed to both thermoneutral (17.7degreesC-26.1degreesC) and hot (16.7degreesC-32.9degreesC) environmental conditions. By design, during the thermoneutral period, the ADLIB cattle displayed greater intake (P < 0.05) than the LIMIT group, with the BUNK group being intermediate. However, during the hot period, both the LIMIT and BUNK treatment groups increased feed intake 4-5%, whereas feed intake of the ADLIB treatment group declined nearly 2%. During both periods respiration rate (RR, breath/min) followed the same pattern that was observed for feed intake, with the greatest (P < 0.05) RR found in the ADLIB treatment group (81.09 and 109.55, thermoneutral and hot, respectively) and lowest (P < 0.05) RR in the LIMIT treatment group (74.47 and 102.76, thermoneutral and hot, respectively). Rectal temperature (RT) did not differ among treatments during the thermoneutral period or the first hot day, although during the thermoneutral period the ADLIB treatment group did tend to display a lower RT, possibly as a result of other physiological processes (pulse rate and RR) aiding to keep RT lower. During the hot period, differences in RT were found on Day 5, with the LIMIT cattle having lower (P < 0.10) RT (38.92degreesC) than the ADLIB (39.18degreesC) cattle, with BUNK cattle RT (39.14degreesC) being intermediate. However, when hourly data were examined, the ADLIB cattle had greater(P < 0.05) RT than the BUNK and LIMIT at 1800 hours and greater RT (P < 0.05) than the LIMIT group at 1400, 1500, and 1600 hours. Clearly, a change in diurnal RT pattern was obtained by using the LIMIT and BUNK feeding regimen. Both of these groups displayed a peak RT during the hot conditions, between 2100 and 2200 hours, whereas the ADLIB group displayed a peak RT between 1400 and 1500 hours, a time very close to when peak climatic stress occurs. Based on these results it is apparent that feedlot managers could alleviate the effects of adverse hot weather on cattle by utilising either a limit-feeding regimen or altering bunk management practices to prevent feed from being consumed several hours prior to the hottest portion of the day.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A controlled crossover experimental design was used to determine the effect of altered water sprinkling duration on heifers subjected to heat stress conditions. Heifers were subjected to 3 days of thermoneutral conditions followed by 3 days of hot conditions accompanied by water sprinkling between 1300 and 1500 h (HOT1-3). Then on the following 2 days (HOT4-5), environmental conditions remained similar, but 3 heifers were sprinkled between 1200 and 1600 h ( WET) and 3 were not sprinkled (NONWET). This was followed by a 1-day period (HOT6) in which environmental conditions and sprinkling regimen were similar to HOT1-3. Rectal temperature (RT) was collected hourly, and respiration rate (RR) was monitored every 2 h on HOT Days 2, 4, 5, and 6. Dry matter intake and rate of eating were also determined. Sprinkling reduced RR and RT (P < 0.01) of all heifers during HOT1-3. During HOT4-5, WET heifers had lower (P < 0.05) RT than NONWET from 1300 to 700 h and lower RR from 1400 to 2000 h. Dry matter intake of NONWET heifers was reduced by 30.6% (P < 0.05) during HOT4-5 and by 51.2% on HOT6. On HOT4-5 the dry matter intakes of WET heifers were similar to intakes under thermoneutral conditions. During HOT6, RT was again reduced following sprinkling in all heifers. Comparison of RT and RR of NONWET and WET heifers on HOT1-3 v. HOT6 revealed that under similar environmental conditions, NONWET heifers had increased RT, partially due to carry-over from HOT4-5. However, NONWET heifers had 40% lower feed intake but tended to have lower RR on HOT6 v. HOT1-3. Only RR of WET heifers was greater on HOT6, possibly a result of switching from a 4-h back to a 2-h sprinkling period, while maintaining a 62% greater intake (5.80 v. 3.58 kg/day) than NONWET heifers during this time. Results suggest that inconsistent cooling regimens may increase the susceptibility of cattle to heat stress and elicit different physiological and metabolic responses.