204 resultados para 650200 Mining and Extraction
Resumo:
Specific cutting energy (SE) has been widely used to assess the rock cuttability for mechanical excavation purposes. Some prediction models were developed for SE through correlating rock properties with SE values. However, some of the textural and compositional rock parameters i.e. texture coefficient and feldspar, mafic, and felsic mineral contents were not considered. The present study is to investigate the effects of previously ignored rock parameters along with engineering rock properties on SE. Mineralogical and petrographic analyses, rock mechanics, and linear rock cutting tests were performed on sandstone samples taken from sites around Ankara, Turkey. Relationships between SE and rock properties were evaluated using bivariate correlation and linear regression analyses. The tests and subsequent analyses revealed that the texture coefficient and feldspar content of sandstones affected rock cuttability, evidenced by significant correlations between these parameters and SE at a 90% confidence level. Felsic and mafic mineral contents of sandstones did not exhibit any statistically significant correlation against SE. Cementation coefficient, effective porosity, and pore volume had good correlations against SE. Poisson's ratio, Brazilian tensile strength, Shore scleroscope hardness, Schmidt hammer hardness, dry density, and point load strength index showed very strong linear correlations against SE at confidence levels of 95% and above, all of which were also found suitable to be used in predicting SE individually, depending on the results of regression analysis, ANOVA, Student's t-tests, and R2 values. Poisson's ratio exhibited the highest correlation with SE and seemed to be the most reliable SE prediction tool in sandstones.
Resumo:
The road to electric rope shovel automation is marked with technological innovations that include an increase in operational information available to mining operations. The CRCMining Shovel Operator Information System not only collects machine operational data but also provides the operator with knowledge-of-performance and influences his/her performance to achieve higher productivity with reduced machine duty. The operator’s behaviour is one of the most important aspects of the man-machine interaction to be considered before semi- or fully-automated shovel systems can be realised. This paper presents the results of the rope shovel studies conducted by CRCMining between 2002 and 2004, provides information on current research to improve shovel performance and briefly discusses the implications of human-system interactions on future designs of autonomous machines.