80 resultados para 2D lattice
Resumo:
We present a novel, maximum-likelihood (ML), lattice-decoding algorithm for noncoherent block detection of QAM signals. The computational complexity is polynomial in the block length; making it feasible for implementation compared with the exhaustive search ML detector. The algorithm works by enumerating the nearest neighbor regions for a plane defined by the received vector; in a conceptually similar manner to sphere decoding. Simulations show that the new algorithm significantly outperforms existing approaches
Resumo:
The calculation of quantum dynamics is currently a central issue in theoretical physics, with diverse applications ranging from ultracold atomic Bose-Einstein condensates to condensed matter, biology, and even astrophysics. Here we demonstrate a conceptually simple method of determining the regime of validity of stochastic simulations of unitary quantum dynamics by employing a time-reversal test. We apply this test to a simulation of the evolution of a quantum anharmonic oscillator with up to 6.022×1023 (Avogadro's number) of particles. This system is realizable as a Bose-Einstein condensate in an optical lattice, for which the time-reversal procedure could be implemented experimentally.
Resumo:
What entanglement is present in naturally occurring physical systems at thermal equilibrium? Most such systems are intractable and it is desirable to study simple but realistic systems that can be solved. An example of such a system is the one-dimensional infinite-lattice anisotropic XY model. This model is exactly solvable using the Jordan-Wigner transform, and it is possible to calculate the two-site reduced density matrix for all pairs of sites. Using the two-site density matrix, the entanglement of formation between any two sites is calculated for all parameter values and temperatures. We also study the entanglement in the transverse Ising model, a special case of the XY model, which exhibits a quantum phase transition. It is found that the next-nearest-neighbor entanglement (though not the nearest-neighbor entanglement) is a maximum at the critical point. Furthermore, we show that the critical point in the transverse Ising model corresponds to a transition in the behavior of the entanglement between a single site and the remainder of the lattice.
Resumo:
We present a resonating-valence-bond theory of superconductivity for the Hubbard-Heisenberg model on an anisotropic triangular lattice. Our calculations are consistent with the observed phase diagram of the half-filled layered organic superconductors, such as the beta, beta('), kappa, and lambda phases of (BEDT-TTF)(2)X [bis(ethylenedithio)tetrathiafulvalene] and (BETS)(2)X [bis(ethylenedithio)tetraselenafulvalene]. We find a first order transition from a Mott insulator to a d(x)(2)-y(2) superconductor with a small superfluid stiffness and a pseudogap with d(x)(2)-y(2) symmetry.
Resumo:
Intracellular Wolbachia infections are extremely common in arthropods and exert profound control over the reproductive biology of the host. However, very little is known about the underlying molecular mechanisms which mediate these interactions with the host. We examined protein synthesis by Wolbachia in a Drosophila host in vivo by selective metabolic labelling of prokaryotic proteins and subsequent analysis by 1D and 2D gel electrophoresis. Using this method we could identify the major proteins synthesized by Wolbachia in ovaries and testes of flies. Of these proteins the most abundant was of low molecular weight and showed size variation between Wolbachia strains which correlated with the reproductive phenotype they generated in flies. Using the gel systems we employed it was not possible to identify any proteins of Wolbachia origin in the mature sperm cells of infected flies.