134 resultados para 0906 Electrical and Electronic Engineering
Resumo:
The ground and excited state geometry of the six-coordinate copper(II) ion is examined in detail using the CuF64- and Cu(H2O)(6)(2+) complexes as examples. A variety of spectroscopic techniques are used to illustrate the relations between the geometric and electronic properties of these complexes through the characterization of their potential energy surfaces.
Resumo:
A series of novel macrocyclic tetraaza ligands that incorporate a naphthalene moiety as a photoactive chromophore have been prepared and structurally characterized as their Cu(II) complexes. Variable-temperature photophysical studies have concluded that the luminescence quenching evident in the Cu(H) complexes is due to intramolecular electronic energy transfer (EET). In their free-base forms, these ligands undergo reductive luminescence quenching via photoinduced electron transfer (PET) reactions, with proximate amine lone pairs acting as electron donors. Consequently, the emission behavior can be modulated by variations in pH and/or the presence of other Lewis acids such as Zn(H).
Resumo:
This paper details an investigation of a power combiner that uses a reflect array of dual-feed aperture-coupled microstrip patch antennas and a corporate-fed dual-polarized array as a signal distributing/combining device. In this configuration, elements of the reflect array receive a linearly polarized wave and retransmit it with an orthogonal polarization using variable-length sections of microstrip lines connecting receive and transmit ports. By applying appropriate lengths of these delay lines, the array focuses the transmitted wave onto the feed array. The operation of the combiner is investigated for a small-size circular reflect array for the cases of -3 dB, -6 dB and -10 dB edge illumination by the 2 x 2-element dual-polarized array.
Resumo:
A field matching method is described to analyze a recessed circular cavity radiating into a radial waveguide. Using the wall impedance approach, the analysis is divided into two separate problems of the cavity and its external environment. Based on this analysis, a computer algorithm is developed for determining wall admittances as seen at the edge of the patch in the cavity, the radial admittance matrix for the two-probe feed arrangement, and the input impedance as observed from the coaxial line feeding the cavity. This algorithm is tested against the general-purpose Hewlett-Packard finite-element High Frequency Structure Simulator as well as against measured results. Good agreement in all considered cases is noted.
Resumo:
Stem cells, either from embryonic or adult sources, have demonstrated the potential to differentiate into a wide range of tissues depending on culture conditions. This makes them prime candidates for use in tissue engineering applications. Current technology allows us to process biocompatible and biodegradable polymers into three-dimensional (3D) configurations, either as solid porous scaffolds or hydrogels, with controlled macro and/or micro spatial geometry and surface chemistry. Such control provides us with the ability to present highly controlled microenvironments to a chosen cell type. However, the precise microenvironments required for optimal expansion and/or differentiation of stem cells are only now being elucidated, and hence the controlled use of stem cells in tissue engineering remains a very young field. We present here a brief review of the current literature detailing interactions between stem cells and 3D scaffolds of varying morphology and chemical properties, concluding with remaining challenges for those interested in tissue engineering using tailored scaffolds and stem cells.
Resumo:
We describe a network module detection approach which combines a rapid and robust clustering algorithm with an objective measure of the coherence of the modules identified. The approach is applied to the network of genetic regulatory interactions surrounding the tumor suppressor gene p53. This algorithm identifies ten clusters in the p53 network, which are visually coherent and biologically plausible.
Resumo:
One of the main objectives of the first International Junior Researcher and Engineer Workshop on Hydraulic Structures is to provide an opportunity for young researchers and engineers to present their research. But a research project is only completed when it has been published and shared with the community. Referees and peer experts play an important role to control the research quality. While some new electronic tools provide further means to disseminate some research information, the quality and impact of the works remain linked with some thorough expert-review process and the publications in international scientific journals and books. Importantly unethical publishing standards are not acceptable and cheating is despicable.
Impact of Commercial Search Engines and International Databases on Engineering Teaching and Research
Resumo:
For the last three decades, the engineering higher education and professional environments have been completely transformed by the "electronic/digital information revolution" that has included the introduction of personal computer, the development of email and world wide web, and broadband Internet connections at home. Herein the writer compares the performances of several digital tools with traditional library resources. While new specialised search engines and open access digital repositories may fill a gap between conventional search engines and traditional references, these should be not be confused with real libraries and international scientific databases that encompass textbooks and peer-reviewed scholarly works. An absence of listing in some Internet search listings, databases and repositories is not an indication of standing. Researchers, engineers and academics should remember these key differences in assessing the quality of bibliographic "research" based solely upon Internet searches.
Resumo:
The long short-term memory (LSTM) is not the only neural network which learns a context sensitive language. Second-order sequential cascaded networks (SCNs) are able to induce means from a finite fragment of a context-sensitive language for processing strings outside the training set. The dynamical behavior of the SCN is qualitatively distinct from that observed in LSTM networks. Differences in performance and dynamics are discussed.