88 resultados para water-stress


Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is concern of the effects of Produced Formation Water (PFW, an effluent of the offshore oil and gas industry) on temperate/tropical marine organisms of the North West Shelf (NWS) of Australia. Little is known of the effects of PFW on tropical marine organisms, especially keystone species. Exposing the coral Plesiastrea versipora to a range (3-50% v/v) of PFW from Harriet A oil platform resulted in a reduction in photochemical efficiency of the symbiotic dinoflagellate algae in hospite ( in the coral tissues), assessed as a decrease in the ratio of variable fluorescence (F-v) to maximal fluorescence (F-m) measured using chlorophyll fluorescence techniques. Significant differences were noted at PFW concentrations >12.5% ( v/v). In corals where F-v/F-m was significantly lowered by PFW exposure, significant discolouration of the tissues occurred in a subsequent 4-day observation period. The discolouration ( coral bleaching) was caused by a loss of the symbiotic dinoflagellates from the tissues, a known sublethal stress response of corals. PFW caused a significant decrease in F-v/F-m in symbiotic dinoflagellates freshly isolated from the coral Heliofungia actiniformis at 6.25% PFW, slightly lower than the studies in hospite. Corals exposed to lower PFW concentrations (range 0.1%-10% PFW v/v) for longer periods (8 days) showed no decrease in F-v/F-m, discolouration, loss of symbiotic dinoflagellates or changes in gross photosynthesis or respiration ( measured using O-2 exchange techniques). The study demonstrates minor toxicity of PFW from Harriet A oil platform to corals and their symbiotic algae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: To evaluate the thermal responses and weight gain in preterm infants nursed in a cot on a heated, water-filled mattress (HWM) compared with infants receiving care in an air-heated incubator and to compare mothers' stress, anxiety levels and perceptions of their infants in the two groups. Methods: Stable preterm infants weighing 1300 to 1500 g were enrolled, being randomly allocated to either the study group (n = 41) receiving care in a cot on an HWM, or the control group ( n = 33) receiving incubator care. The mean daily body temperature and episodes of cold stress and hyperthermia were recorded. Weight gain (g kg(-1) body weight d(-1)) was also calculated. The mothers completed questionnaires on their perceptions of their infants, and their anxiety and stress levels before randomization, and 2 - 3 wk later during the trial. Results: The mean body temperature was similar for the first week of the trial ( study group 36.9degreesC vs controls 36.9degreesC). There were no significant differences in the incidence of cold stress, while more hyperthermic episodes were seen in the study group ( p = 0.03). There were no significant differences in weight gain during the first ( study group 21.4 g vs controls 19.6 g) or second weeks of the trial ( study group 20.5 g vs controls 19.2 g). Neonatal morbidity did not differ between the groups. There were no differences in mothers' perceptions of their babies, or feelings of stress or anxiety. Conclusion: There were no differences between infants cot-nursed on an HWM and those receiving incubator care, with the exception of episodes of high temperature. The results suggest that the HWM may be used safely for low-weight preterm infants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Aims Summer dormancy in perennial grasses has been studied inadequately, despite its potential to enhance plant survival and persistence in Mediterranean areas. The aim of the present work was to characterize summer dormancy and dehydration tolerance in two cultivars of Dactylis glomerata (dormant 'Kasbah', non-dormant 'Oasis') and their hybrid using physiological indicators associated with these traits. Methods Dehydration tolerance was assessed in a glasshouse experiment, while seasonal metabolic changes which produce putative protectants for drought, such as carbohydrates and dehydrins that might be associated with summer dormancy, were analysed in the field. Key Results The genotypes differed in their ability to survive increasing soil water deficit: lethal soil water potential (ψ(s)) was -3(.)4 MPa for 'Kasbah' (although non-dormant), -1(.)3 MPa for 'Oasis', and -1(.)6 MPa for their hybrid. In contrast, lethal water content of apices was similar for all genotypes (approx. 0(.)45 g H2O g d. wt(-1)), and hence the greater survival of 'Kasbah' can be ascribed to better drought avoidance rather than dehydration tolerance. In autumn-sown plants, 'Kasbah' had greatest dormancy, the hybrid was intermediate and 'Oasis' had none. The more dormant the genotype, the lower the metabolic activity during summer, and the earlier the activity declined in spring. Decreased monosaccharide content was an early indicator of dormancy induction. Accumulation of dehydrins did not correlate with stress tolerance, but dehydrin content was a function of the water status of the tissues, irrespective of the soil moisture. A protein of approx. 55 kDa occurred in leaf bases of the most dormant cultivar even in winter. Conclusions Drought avoidance and summer dormancy are correlated but can be independently expressed. These traits are heritable, allowing selection in breeding programmes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Marine plants colonise several interconnected ecosystems in the Great Barrier Reef region including tidal wetlands, seagrass meadows and coral reefs. Water quality in some coastal areas is declining from human activities. Losses of mangrove and other tidal wetland communities are mostly the result of reclamation for coastal development of estuaries, e.g. for residential use, port infrastructure or marina development, and result in river bank destabilisation, deterioration of water clarity and loss of key coastal marine habitat. Coastal seagrass meadows are characterized by small ephemeral species. They are disturbed by increased turbidity after extreme flood events, but generally recover. There is no evidence of an overall seagrass decline or expansion. High nutrient and substrate availability and low grazing pressure on nearshore reefs have lead to changed benthic communities with high macroalgal abundance. Conservation and management of GBR macrophytes and their ecosystems is hampered by scarce ecological knowledge across macrophyte community types. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heating the scleractinian coral, Montipora monasteriata (Forskal 1775) to 32 degrees C under < 650 mu mol quanta m(-2) s(-1) led to bleaching in the form of a reduction in Peridinin, xanthophyll pool, chlorophyll c(2) and chlorophyll a, but areal dinoflagellates densities did not decline. Associated with this bleaching, chlorophyll (Chl) allomerization and dinoflagellate xanthophyll cycling increased. Chl allomerization is believed to result from the interaction of Chl with singlet oxygen (O-1(2)) or other reactive oxygen species. Thermally induced increases in Chl allomerization are consistent with other studies that have demonstrated that thermal stress generates reactive oxygen species in symbiotic dinoflagellates. Xanthophyll cycling requires the establishment of a pH gradient across the thylakoid membrane. Our results indicate that, during the early stages of thermal stress, thylakoid membranes are intact. Different morphs of M. monasteriata responded differently to the heat stress applied: heavily pigmented coral hosts taken from a high-light environment showed significant reductions in green fluorescent protein (GFP)-like homologues, whereas nonhost pigmented high-light morphs experienced a significant reduction in water-soluble protein content. Paradoxically, the more shade acclimated cave morph were, based on Chl fluorescence data, less thermally stressed than either of the high-light morphs. These results Support the importance of coral pigments for the regulation of the light environment within the host tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the first characterization of the mechanical properties of lysozyme films formed by self-assembly at the air-water interface using the Cambridge interfacial tensiometer (CIT), an apparatus capable of subjecting protein films to a much higher level of extensional strain than traditional dilatational techniques. CIT analysis, which is insensitive to surface pressure, provides a direct measure of the extensional stress-strain behavior of an interfacial film without the need to assume a mechanical model (e.g., viscoelastic), and without requiring difficult-to-test assumptions regarding low-strain material linearity. This testing method has revealed that the bulk solution pH from which assembly of an interfacial lysozyme film occurs influences the mechanical properties of the film more significantly than is suggested by the observed differences in elastic moduli or surface pressure. We have also identified a previously undescribed pH dependency in the effect of solution ionic strength on the mechanical strength of the lysozyme films formed at the air-water interface. Increasing solution ionic strength was found to increase lysozyme film strength when assembly occurred at pH 7, but it caused a decrease in film strength at pH 11, close to the pI of lysozyme. This result is discussed in terms of the significant contribution made to protein film strength by both electrostatic interactions and the hydrophobic effect. Washout experiments to remove protein from the bulk phase have shown that a small percentage of the interfacially adsorbed lysozyme molecules are reversibly adsorbed. Finally, the washout tests have probed the role played by additional adsorption to the fresh interface formed by the application of a large strain to the lysozyme film and have suggested the movement of reversibly bound lysozyme molecules from a subinterfacial layer to the interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salinity acts to inhibit plant access to soil water by increasing the osmotic strength of the soil solution. As the soil dries, the soil solution becomes increasingly concentrated, further limiting plant access to soil water. An experiment was conducted to examine the effect of salt on plant available water in a heavy clay soil, using a relatively salt tolerant species, wheat ‘Kennedy’, and a more salt sensitive species, chickpea ‘Jimbour’. Sodium chloride was applied to Red Ferrosol at 10 rates from 0 to 3 g/kg. Plants were initially maintained at field capacity. After 3 weeks, plants had become established and watering was ceased. The plants then grew using the water stored in the soil. Once permanent wilting point was reached plants were harvested, and soil water content was measured. The results showed that without salt stress, wheat and chickpea extracted approximately the same amount of water. However, as the salt concentration increased, the ability of chickpea to extract water was severely impaired, while wheat’s ability to extract water was not affected over the range of concentrations examined. Growth of both wheat and chickpea was reduced even from low salt concentrations. Possible explanations for this are that the effect on growth is due to Cl- toxicity and that this occurs at lower concentrations than the osmotic effect of salinity, or that the metabolic demands of maintaining plant water balance and extracting soil water under saline conditions result in reduced growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence is presented for the existence of a countercurrent flow between water and blood at the respiratory surfaces of the Port Jackson shark gill.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the ability of negatively versus positively perceived stress to predict outcome of treatment for binge eating disorder (BED). Participants were 62 obese women satisfying the DSMIV research criteria for BED. Stress was measured using an instrument based on the Recent Life Change Questionnaire (RLCQ). Participants experiencing high negative stress during the study period reported a binge eating frequency three times greater than that reported by subjects experiencing low negative stress (2.14 vs. 0.65 binge-days/week). Negative stress predicted how fast an individual would reduce binge eating and demonstrated more predictive power than positive stress.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Force measurement in hypervelocity expansion tubes is not possible using conventional techniques. The stress wave force balance technique can be applied in expansion tubes to measure forces despite the short test times involved. This paper presents a new calibration technique for multiple-component stress wave force balances where an impulse response created using a load distribution is required and no orthogonal surfaces on the model exist.. This new technique relies on the tensorial superposition of single-component impulse responses analogous to the vectorial superposition of the calibration loads. The example presented here is that of a scale model of the Mars Pathfinder, but the technique is applicable to any geometry and may be useful for cases where orthogonal loads cannot be applied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skimming flows on stepped spillways are characterised by a significant rate of turbulent dissipation on the chute. Herein an advanced signal processing of traditional conductivity probe signals is developed to provide further details on the turbulent time and length scales. The technique is applied to a 22° stepped chute operating with flow Reynolds numbers between 3.8 and 7.1 E+5. The new correlation analyses yielded a characterisation of large eddies advecting the bubbles. The turbulent length scales were related to the characteristic depth Y90. Some self-similar relationships were observed systematically at both macroscopic and microscopic levels. These included the distributions of void fraction, bubble count rate, interfacial velocity and turbulence level, and turbulence time and length scales. The self-similarity results were significant because they provided a picture general enough to be used to characterise the air-water flow field in prototype spillways.