62 resultados para symbolic mutation
Resumo:
Introduction: Mutation testing for the MEN1 gene is a useful method to diagnose and predict individuals who either have or will develop multiple endocrine neoplasia type 1 ( MEN 1). Clinical selection criteria to identify patients who should be tested are needed, as mutation analysis is costly and time consuming. This study is a report of an Australian national mutation testing service for the MEN1 gene from referred patients with classical MEN 1 and various MEN 1- like conditions. Results: All 55 MEN1 mutation positive patients had a family history of hyperparathyroidism, had hyperparathyroidism with one other MEN1 related tumour, or had hyperparathyroidism with multiglandular hyperplasia at a young age. We found 42 separate mutations and six recurring mutations from unrelated families, and evidence for a founder effect in five families with the same mutation. Discussion: Our results indicate that mutations in genes other than MEN1 may cause familial isolated hyperparathyroidism and familial isolated pituitary tumours. Conclusions: We therefore suggest that routine germline MEN1 mutation testing of all cases of classical'' MEN1, familial hyperparathyroidism, and sporadic hyperparathyroidism with one other MEN1 related condition is justified by national testing services. We do not recommend routine sequencing of the promoter region between nucleotides 1234 and 1758 ( Genbank accession no. U93237) as we could not detect any sequence variations within this region in any familial or sporadic cases of MEN1 related conditions lacking a MEN1 mutation. We also suggest that testing be considered for patients < 30 years old with sporadic hyperparathyroidism and multigland hyperplasia
Resumo:
Background: This paper describes SeqDoC, a simple, web-based tool to carry out direct comparison of ABI sequence chromatograms. This allows the rapid identification of single nucleotide polymorphisms (SNPs) and point mutations without the need to install or learn more complicated analysis software. Results: SeqDoC produces a subtracted trace showing differences between a reference and test chromatogram, and is optimised to emphasise those characteristic of single base changes. It automatically aligns sequences, and produces straightforward graphical output. The use of direct comparison of the sequence chromatograms means that artefacts introduced by automatic base-calling software are avoided. Homozygous and heterozygous substitutions and insertion/deletion events are all readily identified. SeqDoC successfully highlights nucleotide changes missed by the Staden package 'tracediff' program. Conclusion: SeqDoC is ideal for small-scale SNP identification, for identification of changes in random mutagenesis screens, and for verification of PCR amplification fidelity. Differences are highlighted, not interpreted, allowing the investigator to make the ultimate decision on the nature of the change.
Resumo:
Dilated cardiomyopathy (DCM) is an etiologically heterogeneous cardiac disease characterized by left ventricular dilation and systolic dysfunction. Approximately 25-30% of DCM patients show a family history of mainly autosomal dominant inheritance. We and others have previously demonstrated that mutations in the giant muscle filament titin (TTN) can cause DCM. However, the prevalence of titin mutations in familial DCM is unknown. In this paper, we report a novel heterozygous 1-bp deletion mutation (c.62890delG) in TTN that cosegregates with DCM in a large Australian pedigree (A3). The TTN deletion mutation c.62890delG causes a frameshift, thereby generating a truncated A-band titin due to a premature stop codon (p.E20963KfsX10) and the addition of ten novel amino acid residues. The clinical phenotype of DCM in kindred A3 demonstrates incomplete penetrance and variable expressivity. Finally, protein analysis of a skeletal muscle biopsy sample from an affected member did not reveal the predicted truncated titin isoform although the aberrant mRNA was present, suggesting posttranslational modification and degradation of the truncated protein. The identification of a novel disease-causing mutation in the giant titin gene in a third large family with DCM indicates that mutations in titin may account for a significant portion of the genetic etiology in familial DCM.
Resumo:
Strategies to introduce genes into non-embryogenic plants for complementation of a mutation are described and tested on tetraploid alfalfa (Medicago sativa). Genes conditioning embryogenic potential, a mutant phenotype, and a gene to complement the mutation can be combined using several different crossing and selection steps. In the successful strategy used here, the M. sativa genotype MnNC-1008(NN) carrying the recessive non-nodulating mutant allele nn(1) was crossed with the highly embryogenic alfalfa line Regen S and embryogenic hybrid individuals were identified from the F1 progeny. After transformation of these hybrids with the wild-type gene (NORK), an F2 generation segregating for the mutation and transgene were produced. Plants homozygous for the mutant allele and carrying the wild-type NORK transgene could form root nodules after inoculation with Sinorhizobium meliloti demonstrating successful complementation of the nn(1) mutation.
Resumo:
The recent emergence of a decreased susceptibility of Neisseria gonorrhoeae strains to penicillin in New Caledonia has lead clinicians to operate a change in the treatment strategy. In addition, this important health issue has emphasized the need for a rapid means of detecting penicillin resistance in N. gonorrhoeae in order to select an effective treatment and limit the spread of resistant strains. In recent years, the use of fluorescence resonance energy transfer on the LightCycler has proven to be a valuable tool for the screening of mutations occurring in the genome of various microorganisms. In this study, we developed a real-time PCR assay coupled with a fluorometric hybridization probes system to detect a penicillin resistance-associated mutation on the N. gonorrhoeae ponA gene. Following an extensive evaluation involving 136 isolates, melting curve analysis correctly evidenced a 5 degrees C T-m shift in all N. gonorrhoeae strains possessing this mutation, as determined by conventional sequencing analysis. Moreover, the mutation profiles obtained with the real-time PCR showed good correlation with the pattern of penicillin susceptibility generated with classical antibiograms. Overall, our molecular assay allowed an accurate and reproducible determination of the susceptibility to penicillin corresponding to a mutation present in all chromosomally mediated resistant strains of N. gonorrhoeae.
Resumo:
Summary form only given. The Java programming language supports concurrency. Concurrent programs are harder to verify than their sequential counterparts due to their inherent nondeterminism and a number of specific concurrency problems such as interference and deadlock. In previous work, we proposed a method for verifying concurrent Java components based on a mix of code inspection, static analysis tools, and the ConAn testing tool. The method was derived from an analysis of concurrency failures in Java components, but was not applied in practice. In this paper, we explore the method by applying it to an implementation of the well-known readers-writers problem and a number of mutants of that implementation. We only apply it to a single, well-known example, and so we do not attempt to draw any general conclusions about the applicability or effectiveness of the method. However, the exploration does point out several strengths and weaknesses in the method, which enable us to fine-tune the method before we carry out a more formal evaluation on other, more realistic components.