102 resultados para superconducting normal-metal heterostructures
Resumo:
The synthetic organic compound λ(BETS)2FeCl4 undergoes successive transitions from an antiferromagnetic insulator to a metal and then to a superconductor as a magnetic field is increased. We use a Hubbard-Kondo model to clarify the role of the Fe3+ magnetic ions in these phase transition. In the high-field regime, the magnetic field acting on the electron spins is compensated by the exchange field He due to the magnetic ions. This suggests that the field-induced superconducting state is the same as the zero-field superconducting state which occurs under pressure or when the Fe3+ ions are replaced by non-magnetic Ga3+ ions. We show how Hc can be extracted from the observed splitting of the Shybnikov-de Haas frequencies. Furthermore, we use this method of extracting He to predict the field range for field-induced superconductivity in other materials. We also show that at high fields the spin fluctuations of the localized spins are not important.
Resumo:
The effect of a range of metal ions on the ability of Marimastat to inhibit matrix metalloproteinase 9 (MMP-9) was examined in a fluorescence based proteolytic assay. Whilst none of the metals examined significantly affected the inhibitory ability of Marimastat, several metal ions did have a significant effect on MMP-9 activity itself. In the absence of Marimastat, Zn(II) and Fe(II) significantly inhibited MMP-9 activity at metal ion concentrations of 10 and 100 muM, respectively. In both the absence and presence of Marimastat, Cd(II) significantly inhibited MMP-9 at 100 muM. In contrast, 1 mM Co(II) significantly upregulated MMP-9 proteolytic activity. (C) 2003 Elsevier Science Inc. All rights reserved.
Resumo:
For many years proof that the hypoxic nature of malignant tumours can be used to selectively target anticancer drugs has been sought. Several classes of potential redox activated anticancer drugs have been developed to take advantage of the reducing environment resulting from the hypoxia. Drug complexes with redox active metal centres as carriers have been investigated, but have largely been employed with cytotoxic drugs that require release of the drug intracellularly, complicating the design of such complexes. MMP inhibitors, a new class of anticancer drug, conversely act in the extracellular environment and we have investigated inhibitor complexes with several redox active transition metals. Marimastat is an MMP inhibitor with potent in-vitro antimetastatic activity and was recently in Phase III clinical trials for a variety of cancer types. We have synthesised a Co(II1) complex of marimastat incorporating the tetradentate ligand tpa (tris(2-methylpyridyl)amine) as a carrier ligand. The complex was structurally characterised in the solid state by single crystal X-ray diffraction, the first example of a crystal structure containing marimastat. 2D COSY and NOESY NMR spectra showed that the complex exists in two isomeric forms in solution, corresponding to the cis and trans isomers yet only crystallises in one of these forms. Biological testing of the complex in mice with 4T1.2 tumours showed interesting and unexpected outcomes. Initial results of the tumour growth inhibition study showed that a significant inhibition of growth was exhibited by the complex over the free inhibitor and the control. However, the metastatic potential of both free marimastat and the complex were higher than the control indicating likely problems with the experimental protocol. Further experiments are needed to determine the potential of such complexes as hypoxia activated prodrugs but there appears at least to be some promise.
Resumo:
Motivated by the unconventional properties and rich phase diagram of NaxCoO2 we consider the electronic and magnetic properties of a two-dimensional Hubbard model on an isotropic triangular lattice doped with electrons away from half-filling. Dynamical mean-field theory (DMFT) calculations predict that for negative intersite hopping amplitudes (t < 0) and an on-site Coulomb repulsion, U, comparable to the bandwidth, the system displays properties typical of a weakly correlated metal. In contrast, for t > 0 a large enhancement of the effective mass, itinerant ferromagnetism, and a metallic phase with a Curie-Weiss magnetic susceptibility are found in a broad electron doping range. The different behavior encountered is a consequence of the larger noninteracting density of states (DOS) at the Fermi level for t > 0 than for t < 0, which effectively enhances the mass and the scattering amplitude of the quasiparticles. The shape of the DOS is crucial for the occurrence of ferromagnetism as for t > 0 the energy cost of polarizing the system is much smaller than for t < 0. Our observation of Nagaoka ferromagnetism is consistent with the A-type antiferromagnetism (i.e., ferromagnetic layers stacked antiferromagnetically) observed in neutron scattering experiments on NaxCoO2. The transport and magnetic properties measured in NaxCoO2 are consistent with DMFT predictions of a metal close to the Mott insulator and we discuss the role of Na ordering in driving the system towards the Mott transition. We propose that the Curie-Weiss metal phase observed in NaxCoO2 is a consequence of the crossover from a bad metal with incoherent quasiparticles at temperatures T > T-* and Fermi liquid behavior with enhanced parameters below T-*, where T-* is a low energy coherence scale induced by strong local Coulomb electron correlations. Our analysis also shows that the one band Hubbard model on a triangular lattice is not enough to describe the unusual properties of NaxCoO2 and is used to identify the simplest relevant model that captures the essential physics in NaxCoO2. We propose a model which allows for the Na ordering phenomena observed in the system which, we propose, drives the system close to the Mott insulating phase even at large dopings.
Resumo:
Background Schizophrenia has been associated with semantic memory impairment and previous studies report a difficulty in accessing semantic category exemplars (Moelter et al. 2005 Schizophr Res 78:209–217). The anterior temporal cortex (ATC) has been implicated in the representation of semantic knowledge (Rogers et al. 2004 Psychol Rev 111(1):205–235). We conducted a high-field (4T) fMRI study with the Category Judgment and Substitution Task (CJAST), an analogue of the Hayling test. We hypothesised that differential activation of the temporal lobe would be observed in schizophrenia patients versus controls. Methods Eight schizophrenia patients (7M : 1F) and eight matched controls performed the CJAST, involving a randomised series of 55 common nouns (from five semantic categories) across three conditions: semantic categorisation, anomalous categorisation and word reading. High-resolution 3D T1-weighted images and GE EPI with BOLD contrast and sparse temporal sampling were acquired on a 4T Bruker MedSpec system. Image processing and analyses were performed with SPM2. Results Differential activation in the left ATC was found for anomalous categorisation relative to category judgment, in patients versus controls. Conclusions We examined semantic memory deficits in schizophrenia using a novel fMRI task. Since the ATC corresponds to an area involved in accessing abstract semantic representations (Moelter et al. 2005), these results suggest schizophrenia patients utilise the same neural network as healthy controls, however it is compromised in the patients and the different ATC activity might be attributable to weakening of category-to-category associations.
Resumo:
Vertical direct chill (VDC) casting of aluminium alloys is a mature process that has evolved over many decades through gradual change to both equipment design and casting practice. Today, air-pressurised, continuous lubrication, hot top mould systems with advanced station automation are selected as the process of choice for producing extrusion billet. Specific sets of operating parameters are employed on these stations for each alloy and size combination to produce optimal billet quality. The designs and parameters are largely derived from past experience and accumulated know-how. Recent experimental work at the University of Queensland has concentrated on understanding the way in which the surface properties of liquid aluminium alloys, e.g., surface tension, wetting angle and oxide skin strength, influence the size and shape of the naturally-stab le meniscus for a given alloy, temperature and atmosphere. The wide range of alloy-and condition-dependent values measured has led to the consideration of how these properties impact the stability of the enforced molten metal meniscus within the hot top mould cavity. The actual shape and position of the enforced meniscus is controlled by parameters such as the upstream conduction distance (UCD) from sub-mould cooling and the molten metal head. The degree of deviation of this actual meniscus from the predicted stable meniscus is considered to be a key driver in surface defect formation. This paper reports on liquid alloy property results and proposes how this knowledge might be used to better design VDC mould systems and casting practices.
Resumo:
Magneto-transport measurements of the 2D hole system (2DHS) in p-type Si-Si1-xGex heterostructures identify the integer quantum Hall effect (IQHE) at dominantly odd-integer filling factors v and two low-temperature insulating phases (IPs) at v = 1.5 and v less than or similar to 0.5, with re-entrance to the quantum Hall effect at v = 1. The temperature dependence, current-voltage characteristics, and tilted field and illumination responses of the IP at v = 1.5 indicate that the important physics is associated with an energy degeneracy of adjacent Landau levels of opposite spin, which provides a basis for consideration of an intrinsic, many-body origin.
Resumo:
In this paper use consider the problem of providing standard errors of the component means in normal mixture models fitted to univariate or multivariate data by maximum likelihood via the EM algorithm. Two methods of estimation of the standard errors are considered: the standard information-based method and the computationally-intensive bootstrap method. They are compared empirically by their application to three real data sets and by a small-scale Monte Carlo experiment.
Resumo:
Izenman and Sommer (1988) used a non-parametric Kernel density estimation technique to fit a seven-component model to the paper thickness of the 1872 Hidalgo stamp issue of Mexico. They observed an apparent conflict when fitting a normal mixture model with three components with unequal variances. This conflict is examined further by investigating the most appropriate number of components when fitting a normal mixture of components with equal variances.
Resumo:
To date, measurements of GH-binding protein (GHBP) during human pregnancy have been carried out using;assays susceptible to interference by the elevated levels of human placental GH typical of late gestation. We recruited a large cohort of pregnant women (n = 140) for serial measurements of GHBP and used the ligand immunofunctional assay for GHBP. For normal gravidas, GHBP levels fell throughout gestation. Mean levels were 1.07 nmol/L (SE = 0.18) in the first trimester, 0.90 nmol/L (SE = 0.08) at 18-20 weeks, 0.73 nmol/L (SE = 0.05) at 28-30 weeks, and 0.62 nmol/L (SE = 0.06) at 36-38 weeks. GHBP levels in the first trimester correlated significantly with maternal body mass index (r = 0.58; P < 0.01). GHBP levels in pregnancies complicated by noninsulin-dependent diabetes mellitus (NIDDM) were substantially elevated at all gestational ages. The mean value in the first quarter (2.29 nmol/L) was more than double the normal mean (P < 0.01). In contrast, patients with insulin-dependent diabetes mellitus (IDDM) showed reduced GHBP concentrations at 36-38 weeks. The correlation between body mass index and GHBP is consistent with a metabolic role for GHBP during pregnancy, as is the dramatic elevation in GHBP observed in cases of NIDDM. At 36 weeks gestation, GHBP was significantly elevated (P < 0.01) in those women whose neonates had low birth weight (
Resumo:
This investigation focused on the finite element analyses of elastic and plastic properties of aluminium/alumina composite materials with ultrafine microstructure. The commonly used unit cell model was used to predict the elastic properties. By combining the unit cell model with an indentation model, coupled with experimental indentation measurements, the plastic properties of the composites and the associated strengthening mechanism within the metal matrix material were investigated. The grain size of the matrix material was found to be an important factor influencing the mechanical properties of the composites studied. (C) 1997 Elsevier Science S.A.