47 resultados para super-resolution
Resumo:
Subtractive imaging in confocal fluorescence light microscopy is based on the subtraction of a suitably weighted widefield image from a confocal image. An approximation to a widefield image can be obtained by detection with an opened confocal pinhole. The subtraction of images enhances the resolution in-plane as well as along the optic axis. Due to the linearity of the approach, the effect of subtractive imaging in Fourier-space corresponds to a reduction of low spatial frequency contributions leading to a relative enhancement of the high frequencies. Along the direction of the optic axis this also results in an improved sectioning. Image processing can achieve a similar effect. However, a 3D volume dataset must be acquired and processed, yielding a result essentially identical to subtractive imaging but superior in signal-to-noise ratio. The latter can be increased further with the technique of weighted averaging in Fourier-space. A comparison of 2D and 3D experimental data analysed with subtractive imaging, the equivalent Fourier-space processing of the confocal data only, and Fourier-space weighted averaging is presented. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Diffraction quality crystals are essential for crystallographic studies of protein structure, and the production of poorly diffracting crystals is often regarded as a dead end in the process. Here we show a dramatic improvement of poorly diffracting DsbG crystals allowing high-resolution diffraction data measurement. Before dehydration, the crystals are fragile and the diffraction pattern is streaky, extending to 10 Angstrom resolution. After dehydration, there is a spectacular improvement, with the diffraction pattern extending to 2 Angstrom resolution. This and other recent results show that dehydration is a simple, rapid, and inexpensive approach to convert poor quality crystals into diffraction quality crystals.