247 resultados para structural path modelling
Resumo:
The three possible disulfide bonded isomers of alpha-conotoxin GI have been selectively synthesised and their structures determined by H-1 NMR spectroscopy. alpha-Conotoxin GI derives from the venom of Conus geographus and is a useful neuropharmacological tool as it selectively binds to the nicotinic acetylcholine receptor (nAChR), a ligand-gated ion channel involved in nerve signal transmission. The peptide has the sequence ECCNPACGRHYSC-NH2, and the three disulfide bonded isomers are referred to as GI(2-7;3-13), GI(2-13;3-7) and GI(2-3;7-13). The NMR structure for the native isomer GI(2-7;3-13) is of excellent quality, with a backbone pairwise RMSD of 0.16 Angstrom for a family of 35 structures, and comprises primarily a distorted 3(10),, helix between residues 5 to 11. The two non-native isomers exhibit multiple conformers in solution, with the major populated forms being different in structure both from each other and from the native form. Structure-activity relationships for the native GI(2-7;3-13) as well as the role of the disulfide bonds on folding and stability of the three isomers are examined. It is concluded that the disulfide bonds in alpha-conotoxin GI play a crucial part in determining both the structure and stability of the peptide. A trend for increased conformational heterogeneity was observed in the order of GI(2-7;3-13) < GI(2-13;3-7) < GI(2-3;7-13). It was found that the peptide bond joining Cys2 to Cys3 in GI(2-3;7-13) is predominantly trans, rather than cis as theoretically predicted. These structural data are used to interpret the varying nAChR binding of the non-native forms. A model for the binding of native GI(2-7;3-13) to the mammalian nAChR is proposed, with an alpha-subunit binding face made up of Cys2, Asn4, Pro5, Ala6 and Cys7 and a selectivity face, comprised of Arg9 and His10. These two faces orient the molecule between the alpha and delta subunits of the receptor. The structure of the CCNPAC sequence of the native GI(2-7;3-13) is compared to the structure of the identical sequence from the toxic domain of heat-stable enterotoxins, which forms part of the receptor binding region of the enterotoxins, but which has a different disulfide connectivity. (C) 1998 Academic Press Limited.
Resumo:
Intracellular amastigotes of the protozoan parasite Leishmania mexicana secrete a macromolecular proteophosphoglycan (aPPG) into the phagolysosome of their host cell, the mammalian macrophage. The structures of aPPG glycans were analyzed by a combination of high pH anion exchange high pressure liquid chromatography, gas chromatography-mass spectrometry, enzymatic digestions, electrospray-mass spectrometry as well as H-1 and P-31 NMR spectroscopy. Some glycans are identical to oligosaccharides known from Leishmania mexicana promastigote lipophosphoglycan and secreted acid phosphatase, However, the majority of the aPPG glycans represent amastigote stage-specific and novel structures. These include neutral glycans ([Glc beta(1-3)](1-2)Gal beta 1-4Man, Gal beta 1-3Gal beta 1-4Man, Gal beta 1-3Glc beta 1-3Gal beta 1-4Man), several monophosphorylated glycans containing the conserved phosphodisaccharide backbone (R-3-[PO4-6-Gal]beta 1-4Man) but carrying stage-specific modifications (R = Gal beta 1-, [Glc beta 1-3](1-2)Glc beta 1-), and monophosphorylated aPPG tri- and tetrasaccharides that are uniquely phosphorylated on the terminal hexose (PO4-6-Glc beta 1-3Gal beta 1-4Man, PO4-6-Glc beta 1-3Glc beta 1-3Gal beta 1-4Man, PO4-6-Gal beta 1-3Glc beta 1-3Gal beta 1-4Man), In addition aPPG contains highly unusual di- and triphosphorylated glycans whose major species are PO4-6-Glc beta 1-3Glc beta 1-3[PO4-6-Gal]beta 1-4Man, PO4-6-Gal beta 1-3Glc beta 1-3 [PO4-6-Gal]beta 1-4Man, PO4-6-GaL beta 1-3Glc beta 1-3Glc beta 1-3[PO4-6-Gal]beta 1-4Man, PO4-6-Glc beta 1-3[PO4-6-Glc]beta 1-3[PO4-6-Gal]beta 1-4Man, PO4-6Gal beta 1-3[PO4-6-Glc]beta 1-3Glc beta 1-3[PO4-6-Gal]beta 1-4Man, and PO4-6-Glc beta 1-3[PO4-6-Glc]beta 1-3Glc beta 1-3[PO4-6-Gal]beta 1-4Man. These glycans are linked together by the conserved phosphodiester R-Man alpha 1-PO4-6-Gal-R or the novel phosphodiester R-Man alpha 1-PO4-6-Glc-R and are connected to Ser(P) of the protein backbone most likely via the linkage R-Man alpha 1-PO4-Ser. The variety of stage-specific glycan structures in Leishmania mexicana aPPG suggests the presence of developmentally regulated amastigote glycosyltransferases which may be potential anti-parasite drug targets.
Resumo:
Fungal growth in time and space at the substrate surface was modelled for a simple system mimicking solid-state fermentation, using a polycarbonate Nucleopore membrane laid over a glucose solution. Biomass production depends on both tip density and the diffusion of glucose within the fungal hyphae. The model predicts early increases in both height and concentration, followed by a period in which the biomass profile moves with a constant wavefront. The rate of increase in height increases as tip diffusivity increases or as the Monod saturation constant for glucose decreases.
Resumo:
The complexes [Fe([9]aneN(2)S)(2)][ClO4](2), [Fe([9]aneN(2)S)(2)][ClO4](3) and [Fe([9]aneNS(2))(2)][ClO4](2) ([9]aneN(2)S = 1-thia-4. 7-diazacyclononane and [9]aneNS(2) = 1,4-dithia-7-azacyclononane) have been prepared and the latter two characterised by X-ray crystallography. The Mossbauer spectra (isomer shift/mm s(-1), quadrupole splitting/mm s(-1), 4.2 K) for [Fe([9]aneN(2)S)(2)][ClO4](2) (0.52, 0.57), [Fe([9]aneN(2)S)(2)][ClO4](3) (0.25, 2.72) and [Fe([9]aneNS(2))(2)][ClO4](2) (0.43, 0.28) are typical for iron(II) and iron(III) complexes. Variable-temperature susceptibility measurements for [Fe([9]aneN(2)S)(2)][ClO4](2) (2-300 K) revealed temperature-dependent behaviour in both the solid state [2.95 mu(B) (300 K)-0.5 mu(B) (4.2 K)] and solution (Delta H degrees 20-22 kJ mol(-1), Delta S degrees 53-60 J mol(-1) K-1). For [Fe([9]aneN(2)S)(2)][ClO4](3) in the solid state [2.3 mu(B) (300 K)-1.9 mu(B) (4.2 K)] the magnetic data were fit to a simple model (H = -lambda L . S + mu L-z) to give the spin-orbit coupling constant (lambda) of -260 +/- 10 cm(-1). The solid-state X-band EPR spectrum of [Fe([9]aneN(2)S)(2)][ClO4](3) revealed axial symmetry (g(perpendicular to) = 2.607, g(parallel to) = 1.599). Resolution of g(perpendicular to) into two components at Q-band frequencies indicated a rhombic distortion. The low-temperature single-crystal absorption spectra of [Fe([9]aneN(2)S)(2)][ClO4](2) and [Fe([9]aneNS(2))(2)][ClO4](2) exhibited additional bands which resembled pseudotetragonal low-symmetry splitting of the parent octahedral (1)A(1g) --> T-1(2g) and (1)A(1g) ---> T-1(1g) transitions. However, the magnitude of these splittings was too large, requiring 10Dq for the thioether donors to be significantly larger than for the amine donors. Instead, these bands were tentatively assigned to weak, low-energy S --> Fe-II charge-transfer transitions. Above 200 K, thermal occupation of the high-spin T-5(2g) ground state resulted in observation of the T-5(2g) --> E-5(g) transition in the crystal spectrum of [Fe([9]aneN(2)S)(2)][ClO4](2). From a temperature-dependence study, the separation of the low-spin (1)A(1g) and high-spin T-5(2g) ground states was approximately 1700 cm(-1). The spectrum of the iron(III) complex [Fe([9]aneN(2)S)(2)][ClO4](3) is consistent with a low-spin d(5) configuration.
Resumo:
The ligand-binding domain of the low-density lipoprotein (LDL) receptor is comprised of seven tandemly repeated ligand-binding modules, each being approximately 40 amino acids long and containing six conserved cysteine residues. We have expressed and characterized a concatemer of the first two modules (LB1 and LB2) of the human LDL receptor. Oxidative folding of the recombinant concatemer (rLB(1-2)), in the presence of calcium ions, gave a single dominant isomer with six disulfide bonds. Peptic cleavage of the short Linker region that connects the last cysteine residue of LB1 and the first cysteine residue of LB2 yielded two discrete fragments, thus excluding the presence of intermodule disulfide bonds. The N-terminal module, LB1, reacted with a conformation-specific monoclonal antibody (IgG-C7) made to LB1 in the native LDL receptor. From this, we concluded that the first module was correctly folded, with the same set of disulfide bonds as LB1 of the LDL receptor. The disulfide bond connections of LB2 were identified from mass spectral analysis of fragments formed by digestion of the C-terminal peptic fragment with elastase. These data showed that the disulfide bonds of LB2 connected Cys(I) and Cys(III), Cys(II) and Cys(V), and Cys(IV) and Cys(VI). This pattern is identical to that found for recombinant LB1 and LB2. The concatemer has two high-affinity calcium-binding sites, one per module. An analysis of the secondary chemical shifts of C alpha protons shows that the conformations of LB1 and LB2 in the concatemer are very similar to those of the individual modules, with no evidence for strong interactions between the two modules.
Resumo:
A version of the Agricultural Production Systems Simulator (APSIM) capable of simulating the key agronomic aspects of intercropping maize between legume shrub hedgerows was described and parameterised in the first paper of this series (Nelson et al., this issue). In this paper, APSIM is used to simulate maize yields and soil erosion from traditional open-field farming and hedgerow intercropping in the Philippine uplands. Two variants of open-field farming were simulated using APSIM, continuous and fallow, for comparison with intercropping maize between leguminous shrub hedgerows. Continuous open-field maize farming was predicted to be unsustainable in the long term, while fallow open-field farming was predicted to slow productivity decline by spreading the effect of erosion over a larger cropping area. Hedgerow intercropping was predicted to reduce erosion by maintaining soil surface cover during periods of intense rainfall, contributing to sustainable production of maize in the long term. In the third paper in this series, Nelson et al. (this issue) use cost-benefit analysis to compare the economic viability of hedgerow intercropping relative to traditional open-field farming of maize in relatively inaccessible upland areas. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Two previous papers in this series (Nelson et al., this issue) described the use of the Agricultural Production Systems Simulator (APSIM) to simulate the effect of erosion on maize yields from open-field farming and hedgerow intercropping in the Philippine uplands. In this paper, maize yields simulated with APSIM are used to compare the economic viability of intercropping maize between leguminous shrub hedgerows with that of continuous and fallow open-field farming of maize. The analysis focuses on the economic incentives of upland farmers to adopt hedgerow intercropping, discussing farmers' planning horizons, access to credit and security of land tenure, as well as maize pricing in the Philippines. Insecure land tenure has limited the planning horizons of upland farmers, and high establishment costs reduce the economic viability of hedgerow intercropping relative to continuous and fallow open-field farming in the short term, In the long term, high discount rates and share-tenancy arrangements in which landlords do not contribute to establishment costs reduce the economic viability of hedgerow intercropping relative to fallow open-field farming, (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The pentadentate H(3)bhci [1,3,5-trideoxy-1,3-bis((2-hydroxybenzyl)amino)-cis-inistol] and its bifunctionalized analogue H(3)bhci-glu-H [1,3,5-trideoxy-1,3-bis((2-hydroxybenzyl)amino)-5-glutaramido-cis-inositol] were synthesized, and their coordination chemistry was investigated with inactive rhenium, with no carrier added Re-188 and with carrier added Re-186. The neutral Re(V) complexes [ReO-(bhci)] and [ReO(bhci-glu-H)] are formed in good yields starting from [ReOCl3(P(C6H5)(3))(2)] or in quantitative yield directly from [(ReO4)-Re-186/188](-) in aqueous solution by reduction with Sn(II) or Sn(0). The X-ray structures of [ReO(bhci)] and [ReO(bhci-glu-H)] were elucidated revealing pentadentate side on coordination of the ligands to the Re=O core. The basic cyclohexane frame adopts a chair form in the case of [ReO(bhci)] and a twisted boat form in the case of [ReO(bhci-glu-H)]. [ReO(bhci)] crystallizes in the monoclinic space group C2/c with a = 27.425(3), b = 14.185(1), c = 19.047(2) Angstrom, and beta = 103.64(2)degrees and [ReO(bhci-glu-H)] in the monoclinic space group P2(1)/c with a = 13.056(3), b = 10.180(1), c = 22.378(5) Angstrom and beta = 98.205(9)degrees Both Re-188 complexes are stable in human serum for at least 3 days without decomposition. After injection into mice, [ReO(bhci-glu)](-) is readily excreted through the intestines, while [ReO(bhci)] is excreted by intestines, liver, and the kidneys. TLC investigations of the urine showed exclusively the complexes [ReO(bhci-glu-H)] and [ReO(bhci)], respectively, and no decomposition products. For derivatization of antibodies, the carboxylic group of [ReO(bhci-glu-H)] was activated with N-hydroxysuccinimide, which required unusually vigorous reaction conditions (heating). The anti colon cancer antibody mAb-35 [IgG and F(ab')(2) fragment] was labeled with [(ReO)-Re-186/188(bhci-glu)] to a specific activity of up to 1.5 mCi/mg (55 MBq/mg) with full retention of immunoreactivity. Labeling yields followed pseudo-first-order kinetics in antibody concentration with the ratio of rates between aminolysis and hydrolysis being about 2. Biodistributions of Re-186-labeled intact mAb-35 as well as of its F(ab')(2) fragment in tumor-bearing nude mice revealed good uptake by the tumor with only low accumulation of radioactivity in normal tissue.
Resumo:
We present finite element simulations of temperature gradient driven rock alteration and mineralization in fluid saturated porous rock masses. In particular, we explore the significance of production/annihilation terms in the mass balance equations and the dependence of the spatial patterns of rock alteration upon the ratio of the roll over time of large scale convection cells to the relaxation time of the chemical reactions. Special concepts such as the gradient reaction criterion or rock alteration index (RAI) are discussed in light of the present, more general theory. In order to validate the finite element simulation, we derive an analytical solution for the rock alteration index of a benchmark problem on a two-dimensional rectangular domain. Since the geometry and boundary conditions of the benchmark problem can be easily and exactly modelled, the analytical solution is also useful for validating other numerical methods, such as the finite difference method and the boundary element method, when they are used to dear with this kind of problem. Finally, the potential of the theory is illustrated by means of finite element studies related to coupled flow problems in materially homogeneous and inhomogeneous porous rock masses. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
Objectives This study examines the direct and mediated effects of shift workers' coping strategies and social support on structural work-nonwork conflict and subjective health. Methods The participants were 172 registered female nurses, aged 21 to 40 years. They all worked full-time, on rapidly rotating, 8-hour shifts in metropolitan general hospitals. All the respondents completed a self-administered questionnaire requesting demographic information and data on sources of social support, work-nonwork conflict, and coping strategies. Results A path model with good fit (chi(2)=28.88, df=23, P>.23, CFI=0.97) demonstrated complex effects of social support and coping on structural work-nonwork conflict and health. Conclusions Structural work-nonwork conflict mediated the effects of social support from supervisors and emotionally expressive coping on psychological symptoms. Control of shifts mediated the effect of social support from supervisors on structural work-nonwork conflict. Disengagement coping had direct and mediated effects on psychological and physical health. However, it also had mediated effects, with the effect on psychological health being mediated by support from co-workers and the effect on physical symptoms being mediated by family support. Go-worker support mediated the effect of social support from supervisors on psychological symptoms. Overall, these findings support previous research and clarify the process by which coping strategies and social support affect structural work-nonwork conflict and health in shift work.
Resumo:
We use a spatially explicit population model to explore the population consequences of different habitat selection mechanisms on landscapes with fractal variation in habitat quality. We consider dispersal strategies ranging from random walks to perfect habitat selectors for two species of arboreal marsupial, the greater glider (Petauroides volans) and the mountain brushtail possum (Trichosurus caninus). In this model increasing habitat selection means individuals obtain higher quality territories, but experience increased mortality during dispersal. The net effect is that population sizes are smaller when individuals actively select habitat. We find positive relationships between habitat quality and population size can occur when individuals do not use information about the entire landscape when habitat quality is spatially autocorrelated. We also find that individual behaviour can mitigate the negative effects of spatial variation on population average survival and fecundity. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Zinc fingers (ZnFs) are generally regarded as DNA-binding motifs. However, a number of recent reports have implicated particular ZnFs in the mediation of protein-protein interactions. The N-terminal ZnF of GATA-1 (NF) is one such finger, having been shown to interact with a number of other proteins, including the recently discovered transcriptional co-factor FOG. Here we solve the three-dimensional structure of the NF in solution using multidimensional H-1/N-15 NMR spectroscopy, and we use H-1/N-15 spin relation measurements to investigate its backbone dynamics. The structure consists of two distorted beta-hairpins and a single alpha-helix, and is similar to that of the C-terminal ZnF of chicken GATA-1. Comparisons of the NF structure with those of other C-4-type zinc binding motifs, including hormone receptor and LIM domains, also reveal substantial structural homology. Finally, we use the structure to map the spatial locations of NF residues shown by mutagenesis to be essential for FOG binding, and demonstrate that these residues all lie on a single face of the NE Notably, this face is well removed from the putative DNA-binding face of the NE an observation which is suggestive of simultaneous roles for the NF; that is, stabilisation of GATA-1 DNA complexes and recruitment of FOG to GATA-1-controlled promoter regions.
Resumo:
Traditional field sampling approaches for ecological studies of restored habitat can only cover small areas in detail, con be time consuming, and are often invasive and destructive. Spatially extensive and non-invasive remotely sensed data can make field sampling more focused and efficient. The objective of this work was to investigate the feasibility and accuracy of hand-held and airborne remotely sensed data to estimate vegetation structural parameters for an indicator plant species in a restored wetland. High spatial resolution, digital, multispectral camera images were captured from an aircraft over Sweetwater Marsh (San Diego County, California) during each growing season between 1992-1996. Field data were collected concurrently, which included plant heights, proportional ground cover and canopy architecture type, and spectral radiometer measurements. Spartina foliosa (Pacific cordgrass) is the indicator species for the restoration monitoring. A conceptual model summarizing the controls on the spectral reflectance properties of Pacific cordgrass was established. Empirical models were developed relating the stem length, density, and canopy architecture of cordgrass to normalized-difference-vegetation-index values. The most promising results were obtained from empirical estimates of total ground cover using image data that had been stratified into high, middle, and low marsh zones. As part of on-going restoration monitoring activities, this model is being used to provide maps of estimated vegetation cover.
Resumo:
Retroviral entry into cells depends on envelope glycoproteins, whereby receptor binding to the surface-exposed subunit triggers membrane fusion by the transmembrane protein (TM) subunit. We determined the crystal structure at 2.5-Angstrom resolution of the ectodomain of gp21, the TM from human T cell leukemia virus type 1. The gp21 fragment was crystallized as a maltose-binding protein chimera, and the maltose-binding protein domain was used to solve the initial phases by the method of molecular replacement. The structure of gp21 comprises an N-terminal trimeric coiled coil, an adjacent disulfide-bonded loop that stabilizes a chain reversal, and a C-terminal sequence structurally distinct from HIV type 1/simian immunodeficiency virus gp41 that packs against the coil in an extended antiparallel fashion. Comparison of the gp21 structure with the structures of other retroviral TMs contrasts the conserved nature of the coiled coil-forming region and adjacent disulfide-bonded loop with the variable nature of the C-terminal ectodomain segment. The structure points to these features having evolved to enable the dual roles of retroviral TMs: conserved fusion function and an ability to anchor diverse surface-exposed subunit structures to the virion envelope and infected cell surface. The structure of gp21 implies that the N-terminal fusion peptide is in close proximity to the C-terminal transmembrane domain and likely represents a postfusion conformation.
Resumo:
Phenylalanine hydroxylase converts phenylalanine to tyrosine, a rate-limiting step in phenylalanine catabolism and protein and neurotransmitter biosynthesis. It is tightly regulated by the substrates phenylalanine and tetrahydrobiopterin and by phosphorylation. We present the crystal structures of dephosphorylated and phosphorylated forms of a dimeric enzyme with catalytic and regulatory properties of the wild-type protein. The structures reveal a catalytic domain flexibly linked to a regulatory domain. The latter consists of an N-terminal autoregulatory sequence (containing Ser 16, which is the site of phosphorylation) that extends over the active site pocket, and an alpha-beta sandwich core that is, unexpectedly, structurally related to both pterin dehydratase and the regulatory domains of metabolic enzymes. Phosphorylation has no major structural effects in the absence of phenylalanine, suggesting that phenylalanine and phosphorylation act in concert to activate the enzyme through a combination of intrasteric and possibly allosteric mechanisms.