83 resultados para strain engineering
Resumo:
Over the past years, component-based software engineering has become an established paradigm in the area of complex software intensive systems. However, many techniques for analyzing these systems for critical properties currently do not make use of the component orientation. In particular, safety analysis of component-based systems is an open field of research. In this chapter we investigate the problems arising and define a set of requirements that apply when adapting the analysis of safety properties to a component-based software engineering process. Based on these requirements some important component-oriented safety evaluation approaches are examined and compared.
Resumo:
This chapter explores the impact of innovation technologies such as simulation, modelling, and rapid prototyping on engineering practice. Innovation technologies help redefine the role of engineers in the innovation process, creating a new division of innovative labour both with and across organizations. This chapter also explores the boundaries of experimentation and inertia within particular domains of problem-solving to create new opportunities and value.
Resumo:
This paper describes a practical application of MDA and reverse engineering based on a domain-specific modelling language. A well defined metamodel of a domain-specific language is useful for verification and validation of associated tools. We apply this approach to SIFA, a security analysis tool. SIFA has evolved as requirements have changed, and it has no metamodel. Hence, testing SIFA’s correctness is difficult. We introduce a formal metamodelling approach to develop a well-defined metamodel of the domain. Initially, we develop a domain model in EMF by reverse engineering the SIFA implementation. Then we transform EMF to Object-Z using model transformation. Finally, we complete the Object-Z model by specifying system behavior. The outcome is a well-defined metamodel that precisely describes the domain and the security properties that it analyses. It also provides a reliable basis for testing the current SIFA implementation and forward engineering its successor.
Resumo:
Most cellular solids are random materials, while practically all theoretical structure-property results are for periodic models. To be able to generate theoretical results for random models, the finite element method (FEM) was used to study the elastic properties of solids with a closed-cell cellular structure. We have computed the density (rho) and microstructure dependence of the Young's modulus (E) and Poisson's ratio (PR) for several different isotropic random models based on Voronoi tessellations and level-cut Gaussian random fields. The effect of partially open cells is also considered. The results, which are best described by a power law E infinity rho (n) (1<n<2), show the influence of randomness and isotropy on the properties of closed-cell cellular materials, and are found to be in good agreement with experimental data. (C) 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The relationship between the ordering characteristic of the pyrochlore structure type and that characteristic of the defect fluorite structure type (immediately on either side of two phase regions separating the two structure types) in a range of rare eath sesquioxide stabilized cubic zirconias is investigated via electron diffraction and imaging. Systematic structural change as a function of composition and relative size of the constituent metal ions is highlighted and a multi-q to single-q = 1/2 [111]* model proposed for the observed pyrochlore to defect fluorite phase transition. Strain introduced into the close-packed {111} metal ion planes of the defect fluorite average structure by the local cation and oxygen vacancy distribution is pointed to as the likely origin of the observed behavior. (C) 2001 Academic Press
Resumo:
Using a random sample of university students to test general strain theory (GST), this study expanded on previous tests of strain theory in two ways. First, situational anger was measured, a construct that had not been used thus far in assessments of general strain. In addition, this research examined the role of social support networks as a conditioning influence on the effects of strain and anger on intentions to commit three types of criminal behavior (serious assault, shoplifting, and driving under the influence of alcohol [DUI]). The results provided mixed support for GST. While the link between anger and crime was confirmed, the nature of that relationship in some cases ran counter to the theory. Moreover, the evidence indicated that the role of social support networks was complex, and varied as a conditioning influence on intentions to engage in criminal activities. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A strain of Cylindrospermopsis (Cyanobacteria) isolated from a fishpond in Thailand was examined for its taxonomy based upon morphology and 16S rRNA gene sequence. It was also examined for production of the hepatotoxic cyanotoxin called cylindrospermopsin (CYN) and deoxycylindrospermopsin (deoxy-CYN). The strain (CY-Thai) was identified as C. raciborskii (Woloszynska) Seenaya and Subba Raju based upon morphological examination which was confirmed by 16S rRNA gene sequences and phylogenetic comparisons based upon its 16S rRNA gene. The alkaloid heptatotoxin CYN was confirmed using mouse bioassay, HPLC and HPLC-MS/MS while deoxy-CYN was confirmed using HPLC-MS/MS. The mouse bioassay gave a minimum lethal dose at 250 mg dry weight cells/kg body weight within 24 h and 125 mg/kg at 72 h, with signs of poisoning the same as in literature reports for CYN. HPLC chromatographic comparison of the CY-Thai toxin with standard CYN gave the same retention time and an absorbance maximum at 262 nm. HPLC-MS/MS confirmed the presence of CYN (M + H 416) and deoxy-CYN (M + H 400). The CYN content in strain CY-Thai was estimated at 1.02 mg/g and approximately 1/10 of this amount for deoxy-CYN. This is the first report from Asia of a CYN, deoxy-CYN producing Cylindrospermopsis raciborskii. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Petrov-Galerkin methods are known to be versatile techniques for the solution of a wide variety of convection-dispersion transport problems, including those involving steep gradients. but have hitherto received little attention by chemical engineers. We illustrate the technique by means of the well-known problem of simultaneous diffusion and adsorption in a spherical sorbent pellet comprised of spherical, non-overlapping microparticles of uniform size and investigate the uptake dynamics. Solutions to adsorption problems exhibit steep gradients when macropore diffusion controls or micropore diffusion controls, and the application of classical numerical methods to such problems can present difficulties. In this paper, a semi-discrete Petrov-Galerkin finite element method for numerically solving adsorption problems with steep gradients in bidisperse solids is presented. The numerical solution was found to match the analytical solution when the adsorption isotherm is linear and the diffusivities are constant. Computed results for the Langmuir isotherm and non-constant diffusivity in microparticle are numerically evaluated for comparison with results of a fitted-mesh collocation method, which was proposed by Liu and Bhatia (Comput. Chem. Engng. 23 (1999) 933-943). The new method is simple, highly efficient, and well-suited to a variety of adsorption and desorption problems involving steep gradients. (C) 2001 Elsevier Science Ltd. All rights reserved.