80 resultados para sterol biosynthesis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rms4 mutant of pea (Pisum sativum L.) was used in grafting studies and cytokinin analyses of the root xylem sap to provide evidence that, at least for pea, the shoot can modify the import of cytokinins from the root. The rms4 mutation, which confers a phenotype with increased branching in the shoot, causes a very substantial decrease (down to 40-fold less) in the concentration of zeatin riboside (ZR) in the xylem sap of the roots. Results from grafts between wild-type (WT) and rms4 plants indicate that the concentration of cytokinins in the xylem sap of the roots is determined almost entirely by the genotype of the shoot. WT scions normalize the cytokinin concentration in the sap of rms4 mutant roots, whereas mutant scions cause WT roots to behave like those of self-grafted mutant plants. The mechanism whereby rms4 shoots of pea cause a down-regulation in the export of cytokinins from the roots is unknown at this time. However, our data provide evidence that the shoot transmits a signal to the roots and thereby controls processes involved in the regulation of cytokinin biosynthesis in the root.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The products formed by a fructan:fructan fructosyltransferase (FFT) activity purified from Lolium rigidum Gaudin were identified after gas chromatography-mass spectrometry of partially methylated alditol acetates, electrospray ionization-mass spectrometry and reversed-phase high-performance liquid chromatography. The FFT activity synthesized oligofructans up to degree of polymerization (DP) 6, but did not synthesize fructans of DP > 6 even when assayed with (1,1,1)-kestopentaose for up to 10 h. The FFT activity when assayed with 1-kestose or 6(G)-kestose synthesized fructan with fructosyl residues almost exclusively linked by beta-2,1-glycosidic linkages. When assayed with 1-kestose, the FFT activity synthesized tetrasaccharides and pentasaccharides with an internal glucosyl residue. The predominant tetrasaccharide was (1&6(G))-kestotetraose and the predominant pentasaccharide was (1&6(G),1)-kestopentaose. By comparison, tetrasaccharides and pentasaccharides extracted from L. rigidum also contained predominantly beta-2,1-glycosidic linked fructans with an internal glucosyl residue. The only exception was that one of the pentasaccharides contained beta-2,1- and beta-2,6-glycosidic linked fructosyl residues. This pentasaccharide was not synthesized by the FFT activity. The role of this FFT activity in formation of oligofructans in L. rigidum is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Levels of recombinant human follicle stimulating hormone (r-hFSH) mRNA expressed under butyrate and zinc treatment were compared in two CHO-K1 derived cell lines. In King cells under the metallothionein promoter, butyrate induced the increase in both r-hFSH productivity (q(FSH)) and mRNA levels proportionally. In the presence of 1 mM butyrate and 40 mu M zinc, a 4-fold increase in q(FSH) and mRNA levels was achieved as compared to zinc (40) alone; this wasa approximately 6 times higher than in serum free medium. In Darren cells under the beta-actin promotor butyrate induced an increase in q(SFH) but not in mRNA levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute intermittent porphyria (AIP) is an inborn error of haem biosynthesis caused by a variety of mutations in the gene coding for hydroxymethylbilane synthase (HMB-S). The entire coding sequence of this gene, from each of three South African AIP patients, was therefore screened for mutations using chemical cleavage mismatch (CCM) analysis and any changes detected characterized by DNA sequencing. Three single base changes were identified; a G(77) to A in exon 3, a C-346 to T in exon 8 and a G(518) to A in exon 10. These missense mutations, previously reported to be present in other populations, are known to be responsible for the structurally deleterious amino acid replacements R26H, R116W and R173Q, respectively. The in vitro expression of the enzymes containing these mutations and the subsequent measurement of their specific activities revealed a reduction to approximately 4% of normal activity. (C) 1997 Academic Press Limited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recombinant Escherichia coli strains harboring the genes from Alcaligenes eutrophus for polyhydroxyalkanoate biosynthesis were constructed and compared for their ability to synthesize poly(3-hydroxybutyrate) in a defined medium with whey as the sole carbon source. The highest PHB concentration and PHB content obtained were 5.2 g/L and 81% of dry cell weight, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Evidence from recent experimental and clinical studies suggests that excessive circulating levels of aldosterone can bring about adverse cardiovascular sequelae independent of the effects on blood pressure. Examples of these sequelae are the development of myocardial and vascular fibrosis in uninephrectomized, salt-loaded rats infused with mineralocorticoids and, in humans, an association of aldosterone with left ventricular hypertrophy, impaired diastolic and systolic function, salt and water retention causing aggravation of congestion in patients with established congestive cardiac failure (CCF), reduced vascular compliance and an increased risk of arrhythmias (resulting from intracardiac fibrosis, hypokalaemia, hypomagnesaemia, reduced baroreceptor sensitivity and potentiation of catecholamine effects). 2. These sequelae of aldosterone excess may contribute to the pathogenesis and worsen the prognosis of CCF and hypertension. 3. The heart and blood vessels may be capable of extra-adrenal aldosterone biosynthesis, raising the possibility that aldosterone may have paracrine or autocrine (and not just endocrine) effects on cardiovascular tissues. 4. The high prevalence of CCF, which is associated with secondary aldosteronism, and primary aldosteronism (PAL; recently recognized to be a much more common cause of hypertension than was previously thought) argue for an important role for aldosterone excess as a cause of cardiovascular injury. 5. The recognition of non-blood pressure-dependent adverse sequelae of aldosterone excess raises the question as to whether normotensive individuals with PAL, who have been detected as a result of genetic or biochemical screening among families with inherited forms of PAL, are at excess risk of cardiovascular events. 6. Provided that patients are carefully investigated in order to permit the appropriate selection of specific surgical (laparoscopic adrenalectomy for PAL that lateralizes on adrenal venous sampling) or medical (treatment with aldosterone antagonist medications) management and safety considerations for the use of aldosterone antagonists are kept in mind, the appreciation of a widening role for aldosterone in cardiovascular disease should provide a substantially better outlook for many patients with CCF and hypertension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first step in the common pathway for the biosynthesis of branched-chain amino acids is catalysed by acetohydroxyacid synthase (AHAS; EC 4.1.3.18). The enzyme is found in plants, fungi and bacteria, and is regulated by controls on transcription and translation, and by allosteric modulation of catalytic activity. It has long been known that the bacterial enzyme is composed of two types of subunit, and a similar arrangement has been found recently for the yeast and plant enzymes. One type of subunit contains the catalytic machinery, whereas the other has a regulatory function. Previously, we have shown [Pang and Duggleby (1999) Biochemistry 38, 5222-5231] that yeast AHAS can be reconstituted from its separately purified subunits. The, reconstituted enzyme is inhibited by valine, and ATP reverses this inhibition. In the present work, we further characterize the structure and the regulatory properties of reconstituted yeast AHAS. High phosphate concentrations are required for reconstitution and it is shown that these conditions are necessary for physical association between the catalytic and regulatory subunits. It is demonstrated by CD spectral changes that ATP binds to the regulatory subunit alone, most probably as MgATP. Neither valine nor MgATP causes dissociation of the regulatory subunit from the catalytic subunit. The specificity of valine inhibition and MgATP activation are examined and it is found that the only effective analogue of either regulator of those tested is the non-hydrolysable ATP mimic, adenosine 5 '-[beta,gamma -imido]triphosphate. The kinetics of regulation are studied in detail and it is shown that the activation by MgATP depends on the valine concentration in a complex manner that is consistent with a proposed quantitative model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acetohydroxy acid isomeroreductase is a key enzyme involved in the biosynthetic pathway of the amino acids isoleucine, valine, and leucine. This enzyme is of great interest in agrochemical research because it is present only in plants and microorganisms, making it a potential target for specific herbicides and fungicides. Moreover, it catalyzes an unusual two-step reaction that is of great fundamental interest. With a view to characterizing both the mechanism of inhibition by potential herbicides and the complex reaction mechanism, various techniques of enzymology, molecular biology, mass spectrometry, X-ray crystallography, and theoretical simulation have been used. The results and conclusions of these studies are described briefly in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spiroacetals, cryptic ketodiols showing a hydroxyl group at both sides of a carbonyl whithin reachable distances are very widespread in nature. A group of 30 different structures, not including stereoisomers, represent volatile, less polar constituents of insect secretions. Five different systems were identified: 1,6-dioxaspirol[4.4]nonanes, 1,6-dioxaspiro[4.5]decanes, 1,6-dioxaspiro[4.6]undecanes, 1,7-dioxaspiro[5.5] undecanes, and 1,7-dioxaspiro[5.6]dodecanes. Some spiroacetals are insect pheromones: (2S,5R)-2-ethyl-1,6-dioxaspiro[4.4]nonane, chalcogran, 1, is a key component of the male produced aggregation pheromone of the spruce bark beetle, Pityogenes cha2cographus. In contrast, (5S,7S)-7-methyl-1,6-dioxaspiro[4.5]decane, 2, conophthorin, acts as a repellent or spacer in several bark beetles. Racemic 1,7-diosaspiro[5.5]undecane, olean, 5, is the female produced sex pheromone of the olive fly, Bactrocera (Dacus) oleae. The most widespread spiroacetal is 2,8-dimethyl-1,7-dioxaspiro[5.5]undecane, 8. Tt often forms a mixture of (E,E)- and (E,Z)-isomers, the (E,E)-isomer showing (2S,6R,8S)-configuration. In the solitary bee, Andrena wilkella, it serves as an aggregation pheromone. Present knowledge on structures and distribution of volatile spiroacetals is comprehensively compiled. Stereochemical aspects and mass spectrometric fragmentation patterns are discussed in detail to facilitate identifications of hitherto unknown compounds. Synthetic approaches to spiroacetals are classified and reviewed. Last but not least, facts and speculations on the biosynthesis of volatile spiroacetals are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An increasingly comprehensive assessment is being developed of the extent and potential significance of lateral gene transfer among microbial genomes. Genomic sequences can be identified as being of putatively lateral origin by their unexpected phyletic distribution, atypical sequence composition, differential presence or absence in closely related genomes, or incongruent phylogenetic trees. These complementary approaches sometimes yield inconsistent results. Not only more data but also quantitative models and simulations are needed urgently.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ramosus (rms) mutation (rms1) of pea (Pisum sativum) causes increased branching through modification of graft-transmissible signal(s) produced in rootstock and shoot. Additional grafting techniques have led us to propose that the novel signal regulated by Rms1 moves acropetally in shoots and acts as a branching inhibitor. Epicotyl interstock grafts showed that wild-type (WT) epicotyls grafted between rms1 scions and rootstocks can revert mutant scions to a WT non-branching phenotype. Mutant scions grafted together with mutant and WT rootstocks did not branch despite a contiguous mutant root-shoot system. The primary action of Rms1 is, therefore, unlikely to be to block transport of a branching stimulus from root to shoot. Rather, Rms1 may influence a long-distance signal that functions, directly or indirectly, as a branching inhibitor. It can be deduced that this signal moves acropetally in shoots because WT rootstocks inhibit branching in rms1 shoots, and although WT scions do not branch when grafted to mutant rootstocks, they do not inhibit branching in rms1 cotyledonary shoots growing from the same rootstocks. The acropetal direction of transport of the Rms1 signal supports previous evidence that the rms1 lesion is not in an auxin biosynthesis or transport pathway. The different branching phenotypes of WT and rms1 shoots growing from the same rms1 rootstock provides further evidence that the shoot has a major role in the regulation of branching and, moreover, that root-exported cytokinin is not the only graft-transmissible signal regulating branching in intact pea plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cytochrome P450 (P450) enzymes involved in drug metabolism are among the most versatile biological catalysts known. A small number of discrete forms of human P450 are capable of catalyzing the monooxygenation of a practically unlimited variety of xenobiotic substrates, with each enzyme showing a more or less wide and overlapping substrate range. This versatility makes P450s ideally suited as starting materials for engineering designer catalysts for industrial applications. In the course of heterologous expression of P450s in bacteria, we observed the unexpected formation of blue pigments. Although this was initially assumed to be an artifact, subsequent work led to the discovery of a new function of P450s in intermediary metabolism and toxicology, new screens for protein engineering, and potential applications in the dye and horticulture industries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Selected isolates of Cladosporium tenuissimum were tested for their ability to inhibit in vitro aeciospore germination of the two-needle pine stem rusts Cronartium flaccidum and Peridermium pini and to suppress disease development in planta. The antagonistic fungus displayed a number of disease-suppressive mechanisms. Aeciospore germination on water agar slides was reduced at 12, 18, and 24 h when a conidial suspension (1.5 x 10(7) conidia per ml) of the Cladosporium tenuissimum isolates was added. When the aeciospores were incubated in same-strength conidial suspensions for 1, 11, 21, and 31 days, viability was reduced at 20 and 4 degreesC. Light and scanning electron microscopy showed that rust spores were directly parasitized by Cladosporium tenuissimum and that the antagonist had evolved several strategies to breach the spore wail and gain access to the underlying tissues. Penetration occurred with or without appressoria. The hyperparasite exerted a mechanical force to destroy the spore structures (spinules, cell wall) by direct contact, penetrated the aeciospores and subsequently proliferated within them. However, an enzymatic action could also be involved. This was shown by the dissolution of the host tell wall that comes in contact with the mycelium of the mycoparasite, by the lack of indentation in the host wall at the contact site, and by the minimal swelling at the infecting hyphal tip. Culture filtrates of the hyperparasite inhibited germination of rust propagules. A compound purified from the filtrates was characterized by chemical and spectroscopic analysis as cladosporol, a known beta -1,3-glucan biosynthesis inhibitor. Conidia of Cladosporium tenuissimum reduced rust development on new infected pine seedlings over 2 years under greenhouse conditions. Because the fungus is an aggressive mycoparasite, produces fungicidal metabolites, and can survive and multiply in forest ecosystems without rusts, it seems a promising agent for the biological control of pine stem rusts in Europe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most mammalian cells have in their plasma membrane at least two types of lipid microdomains, non-invaginated lipid rafts and caveolae. Glycosylphosphatidylinositol (GPI)-anchored proteins constitute a class of proteins that are enriched in rafts but not caveolae at steady state. We have analyzed the effects of abolishing GPI biosynthesis on rafts, caveolae, and cholesterol levels. GPI-deficient cells were obtained by screening for resistance to the pore-forming toxin aerolysin, which uses this class of proteins as receptors. Despite the absence of GPI-anchored proteins, mutant cells still contained lipid rafts, indicating that GPI-anchored proteins are not crucial structural elements of these domains. Interestingly, the caveolae-specific membrane proteins, caveolin-1 and 2, were up-regulated in GPI-deficient cells, in contrast to flotillin-I and GM1, which were expressed at normal levels. Additionally, the number of surface caveolae was increased. This effect was specific since recovery of GPI biosynthesis by gene recomplementation restored caveolin expression and the number of surface caveolae to wild type levels. The inverse correlation between the expression of GPI-anchored proteins and caveolin-1 was confirmed by the observation that overexpression of caveolin-1 in wild type cells led to a decrease in the expression of GPI-anchored proteins. In cells lacking caveolae, the absence of GPI-anchored proteins caused an increase in cholesterol levels, suggesting a possible role of GPI-anchored proteins in cholesterol homeostasis, which in some cells, such as Chinese hamster ovary cells, can be compensated by caveolin up-regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction between natural and sexual selection is central to many theories of how mate choice and reproductive isolation evolve, but their joint effect on the evolution of mate recognition has not, to my knowledge, been investigated in an evolutionary experiment. Natural and sexual selection were manipulated in interspecific hybrid populations of Drosophila to determine their effects on the evolution of a mate recognition system comprised of cuticular hydrocarbons (CHCs). The effect of natural selection in isolation indicated that CHCs were costly for males and females to produce. The effect of sexual selection in isolation indicated that females preferred males with a particular CHC composition. However, the interaction between natural and sexual selection had a greater effect on the evolution of the mate recognition system than either process in isolation. When natural and sexual selection were permitted to operate in combination, male CHCs became exaggerated to a greater extent than in the presence of sexual selection alone, and female CHCs evolved against the direction of natural selection. This experiment demonstrated that the interaction between natural and sexual selection is critical in determining the direction and magnitude of the evolutionary response of the mate recognition system.