52 resultados para rib fracture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intercalated discs of working myocardium and Purkinje fibers of the monkey heart were examined by scanning and transmission electron microscopy. The NaOH/ultrasonication technique resulted in the digestion of connective tissue and a separation of the intercellular junctions of intercalated discs, such that these could be visualized three-dimensionally. The intercalated discs of ventricular myocytes, atrial myocytes and Purkinje fibers vary considerably in number and configuration, as do the intercalated discs of the three different layers of the ventricular myocardium. Myocytes in the subepicardial, middle and subendocardial layers of the ventricle have 1-3, 4-5 and 5-6 intercalated discs at the end of these cells, respectively, Those in the endocardial layer are characterized by the presence of small laterally-placed intercalated discs. Atrial myocytes and Purkinje fibers usually only have 1-2 intercalated discs, Individual intercalated discs in ventricular myocytes have complicated stairs with 10-30 steps and corresponding risers, while those of atrial myocytes and Purkinje fibers have simple stairs with 1-3 steps and risers, Steps equivalent to the plicate segments are characterized by densely-packed microplicae and finger-like microprojections which greatly increase surface area in vertricular myocytes, Microprojections in atrial myocytes and Purkinje fibers are sparse by comparison, Risers equivalent to the interplicate segments containing large gap junctional areas are most numerous in left ventricular myocytes, followed by right ventricular myocytes, Purkinje fibers and atrial myocytes in decreasing order. The geometric arrangement of the various types of myocytes may be related with impulse propagation. Large intercalated discs of cell trunks and series branches may participate in longitudinal propagation, while small laterally-placed ones may be the site of transverse propagation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experimental white cast iron with the unprecedented fracture tough ness of 40 MPa m(1/2) is currently being studied to determine the mechanisms of toughening. This paper reports the investigation of the role of strain-induced martensitic (SIM) transformation. The dendritic microconstituent in the toughened alloy consists primarily of retained austenite, with precipitated M(7)C(3) carbides and some martensite. Refrigeration experiments and differential scanning calorimetry (DSC) were used to demonstrate, firstly, that this retained austenite has an ''effective'' sub-ambient M(S) temperature and, secondly, that SIM transformation can occur at ambient temperatures. Comparison between room temperature and elevated temperature K-Ic tests showed that the observed SIM produces a transformation toughening response in the alloy, contributing to, but not fully accounting for, its high tough ness. SIM as a mechanism for transformation toughening has not previously been reported for white cast irons. Microhardness traverses on crack paths and X-ray diffraction (XRD) on fracture surfaces confirmed the interpretation of the K-Ic experiments. Further DSC and quantitative XRD showed that, as heat-treatment temperature is varied, there is a correlation between fracture toughness and the volume fraction of unstable retained austenite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different abrasive wear tests have been applied to materials with hardnesses ranging from 80 HV (aluminium) to 1700 HV (tungsten carbide). The tests were: dry sand rubber wheel (DSRbrW); a similar test using a steel wheel (DSStlW); a new combined impact-abrasion test (FIA). The DSRbrW results were as expected, giving generally decreasing wear with increasing hardness. White cast irons and tool steels containing coarse, hard carbide particles performed better than more homogeneous materials of comparable hardness. When normalized to load and distance, the DSStlW results for the homogeneous materials were similar to the DSRbrW results. The multi-phase materials performed poorly in the DSStlW test, with volume loss for high-speed steel (880 HV) higher than that of aluminium. Within this group, wear increased with increasing hardness. These unexpected results are explained in terms of (a) differential friction coefficients of wheel and specimen, (b) increased fracture of sand, and (c) introduction of microfracture wear mechanisms. The FIA combined impact-abrasion results lacked clear correlations with hardness. The span of relative wear rates was similar to that reported for materials in ball mills. White cast irons at maximum hardness performed fairly poorly and showed evidence of microfracture. (C) 1997 Elsevier Science S.A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transmission electron microscopy has been used to study the microstructure of an experimental white cast iran, in which a combination of modified alloy composition and unconventional heat treatment has resulted in a fracture toughness of 40 MPa m(-1/2). Microstructural features of the alloy that contribute to the toughness improvement and hence distinguish it from conventional white irons have been investigated. In the as-cast condition the dendrites are fully austenitic and the eutectic consists of M7C3 carbides and martensite. During heat treatment at 1130 degrees C the austenite is partially destabilized by precipitation of chromium-rich M7C3 carbides. This results in a dendritic microconstituent consisting of bulk retained austenite and secondary carbides which are sheathed with martensite. The martensite sheaths, which contain interlath films of retained austenite, are irregular in shape with some laths extending into the bulk retained austenite. Emphasis has been placed on the morphology, distribution, and stability of the retained austenite and its transformation products in the dendrites. The implications of these findings on the transformation toughening mechanism in this alloy are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The E7 transforming protein of Human Papillomavirus type 16 (HPV16) is expressed in the skin of a line of RIB mice transgenic for the E6 and E7 open reading frames of HPV16 driven from the alpha A crystallin promoter (FVB alpha AcryHPV16E6E7). We have transferred skin from FVB alpha AcryHPV16E6E7 mice to naive or E7-primed syngeneic NE recipients to assess whether the E7 protein of HPV16 can function as a minor transplantation antigen (MTA) and promote skin graft rejection. FVB mice did not reject E7 expressing tail or flank skin grafts. E7 immunized FVB x C57BL/6J mice recipients of FVB alpha AcryHPV16E6E7 x C57BL/6J skin generated humoral and DTH responses to E7 in vivo and E7-specific CTL precursors in the spleen, but failed to reject 57 expressing tail skin grafts by 100 days posttransfer. Thus although HPV16 E7 + ve mesenchymal and endodermal tumors can be eliminated by an E7-specific immune response, the same protein is unable to act as a MTA and promote graft rejection when expressed in skin cells. Lack of rejection of grafts expressing MTAs such as E7 may be relevant to the immunology of epithelial tumors expressing tumor-specific antigens and to our understanding of the immunology of diseases of the skin. (C) 1997 Academic Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maximization of bone accrual during the growing years is thought to be an important factor in minimizing fracture risk in old age. Mechanical loading through physical activity has been recommended as a modality for the conservation of bone mineral in adults; however, few studies have evaluated the impact of different loading regimes in growing children. The purpose of this study was to compare bone mineral density (BMD) in weight-bearing and non-weight-bearing limbs in 17 children with unilateral Legg Calve Perthes Disease (LCPD). Children with this condition have an altered weight-bearing pattern whereby there is increased mechanical loading on the noninvolved normal hip and reduced loading on the involved painful hip. Thus, these children provide a unique opportunity to study the impact of differential mechanical loading on BMD during the growing years while controlling for genetic disposition. BMD at four regions of the proximal femur (trochanter, intertrochanter, femoral neck, total of the regions) was measured using dual energy x-ray absorptiometry (DXA), and the values were compared between the involved and noninvolved sides of the children with LCPD. The BMD of both sides also were compared with normative values based on both chronological and skeletal age data. A significantly higher BMD was found on the noninvolved side over the involved side for all regions (P