65 resultados para remote control of CNC
Pamidronate results in symptom control of hypertrophic pulmonary osteoarthropathy in cystic fibrosis
Resumo:
Hypertrophic pulmonary osteoarthropathy (HPOA) may complicate the advanced lung disease that is associated with cystic fibrosis, resulting in severe joint pain and early-morning stiffness. Symptoms are usually controlled with the administration of nonsteroidal anti-inflammatory drugs, physiotherapy, and, on occasions, oral corticosteroids. I This report describes a case of refractory HPOA with complete remission following the administration of IV pamidronate, which is a potent inhibitor of osteoclastic bone resorption. Symptom relief resulted for up to 3 months, but repeated courses of pamidronate have been required to maintain symptom control.
Resumo:
The efficacy of a photostable formulation of methoprene and two photostable juvenoids, fenoxycarb and pyriproxyfen, and their residual activity in inhibiting the emergence of adult cat fleas, Ctenocephalides felis (Bouche), was studied in topsoil. Nursery pots composed of clay, peat, and plastic, and wooden flats were used to hold soil samples. Treated soil samples were exposed to sunlight during the 63-d study period. Methoprene was as effective as fenoxycarb and pyriproxyfen against cat fleas for up to 42 d in clay, peat, and plastic pots at a concentration of 64.56 mg (AI) /m(2) (6 mg [AI] /ft(2)), but its activity declined significantly thereafter. In contrast, fenoxycarb and pyriproxyfen showed strong residual activity for the entire 63 d. The activity of methoprene declined even more rapidly over time in wooden flats, while at the same concentrations the other two juvenoids showed significant residual activity for 63 d. Clay, peat, and plastic pots were therefore considered to be equally effective for evaluating the outdoor efficacy of juvenoids in comparison to the wooden flats. However, results obtained with wooden flats may be more realistic when testing residual activity of volatile chemicals such as methoprene. Fenoxycarb and pyriproxyfen showed strong efficacy and residual activity at concentrations of 8.07, 16.14, and 32.28 mg (AI) /m(2), whereas methoprene did not cause a significant reduction of adult emergence at levels below 64.56 mg (AI) /m(2). LC50 values for methoprene, fenoxycarb, and pyriproxyfen needed for preventing flea emergence when applied to topsoil were estimated to be 0.643, 0.031, and 0.028 ppm, respectively.
Resumo:
Control of chaotic vibrations in a dual-spin spacecraft with an axial nutational damper is achieved using two techniques. The control methods are implemented on two realistic spacecraft parameter configurations that have been found to exhibit chaotic instability when a sinusoidally varying torque is applied to the spacecraft for a range of forcing amplitudes and frequencies. Such a torque, in practice, may arise under malfunction of the control system or from an unbalanced rotor. Chaotic instabilities arising from these torques could introduce uncertainties and irregularities into a spacecraft's attitude motion and, consequently, could have disastrous effects on its operation. The two control methods, recursive proportional feedback and continuous delayed feedback, are recently developed techniques for control of chaotic motion in dynamic systems. Each technique is outlined and the effectiveness on this model compared and contrasted. Numerical simulations are performed, and the results are studied by means of time history, phase space, Poincare map, Lyapunov characteristic exponents, and bifurcation diagrams.
Resumo:
Control of chaotic instability in a rotating multibody system in the form of a dual-spin spacecraft with an axial nutational damper is achieved using an algorithm derived using energy methods. The control method is implemented on two realistic spacecraft parameter configurations which have been found to exhibit chaotic instability when a sinusoidally varying torque is applied to the spacecraft for a range of forcing amplitudes and frequencies. Such a torque, in practice, may arise under malfunction of the control system or from an unbalanced rotor. Chaotic instabilities arising from these torques could introduce uncertainties and irregularities into a spacecraft's attitude and consequently impair pointing accuracy. The control method is formulated from nutational stability results derived using an energy sink approximation for a dual-spin spacecraft with an asymmetric platform and axisymmetric rotor. The effectiveness of the control method is shown numerically and the results are studied by means of time history, phase space, Poincare map, Lyapunov characteristic exponents and Bifurcation diagrams.
Resumo:
Control of chaotic instability in a simplified model of a spinning spacecraft with dissipation is achieved using an algorithm derived using Lyapunov's second method. The control method is implemented on a realistic spacecraft parameter configuration which has been found to exhibit chaotic instability for a range of forcing amplitudes and frequencies when a sinusoidally varying torque is applied to the spacecraft. Such a torque, may arise in practice from an unbalanced rotor or from vibrations in appendages. Numerical simulations are performed and the results are studied by means of time history, phase space, Poincare map, Lyapunov characteristic exponents and bifurcation diagrams. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Regulation of the expression of dimethylsulfoxide (DMSO) reductase was investigated in the purple phototrophic bacterium Rhodobacter capsulatus. Under phototrophic, anaerobic conditions with malate as carbon source, DMSO caused an approximately 150-fold induction of DMSO reductase activity. The response regulator DorR was required for DMSO-dependent induction and also appeared to slightly repress DMSO reductase expression in the absence of substrate. Likewise, when pyruvate replaced malate as carbon source there was an induction of DMSO reductase activity in cells grown at low light intensity (16 W m(-2)) and again this induction was dependent on DorR. The level of DMSO reductase activity in aerobically grown cells was elevated when pyruvate replaced malate as carbon source. One possible explanation for this is that acetyl phosphate, produced from pyruvate, may activate expression of DMSO reductase by direct phosphorylation of DorR, leading to low levels of induction of dor gene expression in the absence of DMSO. A mutant lacking the global response regulator of photosynthesis gene expression, RegA, exhibited high levels of DMSO reductase in the absence of DMSO, when grown phototrophically with malate as carbon source. This suggests that phosphorylated RegA acts as a repressor of dor operon expression under these conditions. It has been proposed elsewhere that RegA-dependent expression is negatively regulated by the cytochrome cbb(3) oxidase. A cco mutant lacking cytochrome cbb(3) exhibited significantly higher levels of Phi[dorA::lacZ] activity in the presence of DMSO compared to wild-type cells and this is consistent with the above model. Pyruvate restored DMSO reductase expression in the regA mutant to the same pattern as found in wild-type cells. These data suggest that R. capsulatus contains a regulator of DMSO respiration that is distinct from DorR and RegA, is activated in the presence of pyruvate, and acts as a negative regulator of DMSO reductase expression.
Resumo:
Many granulation plants operate well below design capacity, suffering from high recycle rates and even periodic instabilities. This behaviour cannot be fully predicted using the present models. The main objective of the paper is to provide an overview of the current status of model development for granulation processes and suggest future directions for research and development. The end-use of the models is focused on the optimal design and control of granulation plants using the improved predictions of process dynamics. The development of novel models involving mechanistically based structural switching methods is proposed in the paper. A number of guidelines are proposed for the selection of control relevant model structures. (C) 2002 Published by Elsevier Science B.V.
Resumo:
Phytophthora nicotianae is a devastating root and stem pathogen of tobacco (Nicotiana tabacum) in South Africa. Growers strive to control the resulting disease, known as black shank, with metalaxyl treatments and resistant cultivars. The aim of this study was to consider whether development of metalaxyl resistance in P. nicotianae has contributed to poor disease control and if recently developed cultivars with high levels of resistance require metalaxyl for effective control. One hundred and thirty-two isolates of P. nicotianae were screened for sensitivity to metalaxyl. P. nicotianae isolates from most tobacco farms were metalaxyl sensitive. Growth of most isolates was inhibited completely at 1.0 μg a.i./ml. However, isolates from the MKTV tobacco producing area showed EC50 values ranging from 1.02 μg a.i./ml to 3.57 μg a.i./ml. Twenty-one tobacco cultivars were planted and treated with and without metalaxyl in two different growing seasons to evaluate their resistance to P. nicotianae and the value of using metalaxyl. Hicks was the most susceptible cultivar. Vuma/3/46, LK30/40/60-1, and LK33/60 exhibited the greatest resistance to P. nicotianae. Use of metalaxyl in combination with moderately resistant cultivars such as NC60 × TL33 and LK10/80/60 effectively reduced black shank in the field. Resistant cultivars were healthy and no significant difference between metalaxyl treated and untreated plants was observed.
Resumo:
The potential to use a GnRH agonist bioimplant and injection of exogenous LH to control the time of ovulation in a multiple ovulation and embryo transfer (MOET) protocol was examined in buffalo. Mixed-parity buffalo (Bubalus bubalis; 4-15-year-old; 529 13 kg LW) were randomly assigned to one of five groups (n = 6): Group 1, conventional MOET protocol; Group 2, conventional MOET with 12 It delay in injection of PGF(2alpha); Group 3, implanted with GnRH agonist to block the pre-ovulatory surge release of LH; Group 4, implanted with GnRH agonist and injected with exogenous LH (Lutropin(R), 25 mg) 24 h after 4 days of superstimulation with FSH; Group 5, implanted with GnRH agonist and injected with LH 36 h after superstimulation with FSH. Ovarian follicular growth in all buffaloes was stimulated by treatment with FSH (Folltropin-V(R), 200 mg) administered over 4 days, and was monitored by ovarian ultrasonography. At the time of estrus, the number of follicles greater than or equal to8 mm. was greater (P < 0.05) for buffaloes in Group 2 (12.8) than for buffaloes in Groups 1 (8.5), 3 (7.3), 4 (6.1) and 5 (6.8), which did not differ. All buffaloes were mated by AI after spontaneous (Groups 1-3) or induced (Groups 4 and 5) ovulation. The respective number of buffalo that ovulated, number of corpora lutea, ovulation rate (%), and embryos + oocytes recovered were: Group 1 (2, 1.8 +/- 1.6, 18.0 +/- 13.6, 0.2 +/- 0.2); Group 2 (4, 6.1 +/- 2.9, 40.5 +/- 17.5, 3.7 +/- 2.1); Group 3 (0, 0, 0, 0); Group 4 (6, 4.3 +/- 1.2, 69.3 +/- 14.2, 2.0 +/- 0.9); and Group 5 (1, 2.5 +/- 2.5, 15.5 +/- 15.5, 2.1 +/- 2.1). All buffaloes in Group 4 ovulated after injection of LH and had a relatively high ovulation rate (69%) and embryo recovery (46%). It has been shown that the GnRH agonist-LH protocol can be used to improve the efficiency of MOET in buffalo. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
The expression and properties of ionic channels were investigated in dissociated neurons from neonatal and adult rat intracardiac ganglia. Changes in the hyperpolarization-activated and ATP-sensitive K+ conductances during postnatal development and their role in neuronal excitability were examined. The hyperpolarization-activated nonselective cation current, I-h, was observed in all neurons studied and displayed slow time-dependent rectification. An inwardly rectifying K+ current, I-K(I), was present in a population of neurons from adult but not neonatal rats and was sensitive to block by extracellular Ba2+. Using the perforated-patch recording configuration, an ATP-sensitive K+ (K-ATP) conductance was identified in greater than or equal to 50% of intracardiac neurons from adult rats. Levcromakalim evoked membrane hyperpolarization, which was inhibited by the sulphonylurea drugs. glibenclamide and tolbutamide. Exposure to hypoxic conditions also activated a membrane current similar to that induced by levcromakalim and was inhibited by glibenclamide. Changes in the complement of ion channels during postnatal development may underlie observed differences in the function of intracardiac ganglion neurons during maturation. Furthermore, activation of hyperpolarization-activated and KATP channels in mammalian intracardiac neurons may play a role in neural regulation of the mature heart and cardiac function during ischaemia-reperfusion. (C) 2002 Elsevier Science B.V All rights reserved.
Resumo:
This study details the novel application of predacious copepods, genus Mesocyclops, for control of Ochlerotatus tremulus (Theobald) group and Aedes aegypti (L.) mosquito larvae in subterranean habitats in north Queensland, Australia. During June 1997, 50 Mesocyclops sp. I were inoculated into one service manhole in South Townsville. Wet season rainfall and flooding in both 1998 and 2000 was responsible for the dispersal of copepods via the underground pipe system to 29 of 35 manholes over an area of 1.33 km(2). Significant reductions in Aedes and Ochlerotatus larvae ensued. In these habitats, Mesocyclops and Metacyclops were able to survive dry periods, when substrate moisture content ranged from 13.8 to 79.9%. At the semiarid inland towns of Hughenden and Richmond, cracking clay soil prevents drainage of water from shallow service pits where Oc. tremulus immatures numbered from 292-18,460 per pit. Introduction of Mesocyclops copepods into these sites during May 1999 resulted in 100% control of Oc. tremulus for 18 mo. One uninoculated pit subsequently became positive for Mesocyclops with resultant control of mosquito larvae.
Resumo:
We describe remarkable success in controlling dengue vectors, Aedes aegypti (L.) and Aedes albopictus (Skuse), in 6 communes with 11,675 households and 49,647 people in the northern provinces of Haiphong, Hung Yen, and Nam Dinh in Vietnam. The communes were selected for high-frequency use of large outdoor concrete tanks and wells. These were found to be the source of 49.6-98.4% of Ae. aegypti larvae, which were amenable to treatment with local Mesocyclops, mainly M. woutersi Van der Velde, M. aspericornis (Daday) and M. thermocyclopoides Harada. Knowledge, attitude, and practice surveys were performed to determine whether the communities viewed dengue and dengue hemorrhagic fever as a serious health threat; to determine their knowledge of the etiology, attitudes, and practices regarding control methods including Mesocyclops; and to determine their receptivity to various information methods. On the basis of the knowledge, attitude, and practice data, the community-based dengue control program comprised a system of local leaders, health volunteer teachers, and schoolchildren, supported by health professionals. Recycling of discards for economic gain was enhanced, where appropriate, and this, plus 37 clean-up campaigns, removed small containers unsuitable for Mesocyclops treatment. A previously successful eradication at Phan Boi village (Hung Yen province) was extended to 7 other villages forming Di Su commune (1,750 households) in the current study. Complete control was also achieved in Nghia Hiep (Hung Yen province) and in Xuan Phong (Nam Dinh province); control efficacy was greater than or equal to 99.7% in the other 3 communes (Lac Vien in Haiphong, Nghia Dong, and Xuan Kien in Nam Dinh). Although tanks and wells were the key container types of Ae. aegypti productivity, discarded materials were the source of 51% of the standing crop of Ae. albopictus. Aedes albopictus larvae were eliminated from the 3 Nam Dinh communes, and 86-98% control was achieved in the other 3 communes. Variable dengue attack rates made the clinical and serological comparison of control and untreated communes problematic, but these data indicate that clinical surveillance by itself is inadequate to monitor dengue transmission.
Resumo:
Approximately half of the motoneurons generated during normal embryonic development undergo programmed cell death. Most of this death occurs during the time when synaptic connections are being formed between motoneurons and their target, skeletal muscle. Subsequent muscle activity stemming from this connection helps determine the final number of surviving motoneurons. These observations have given rise to the idea that motoneuron survival is dependent upon access to muscle derived trophic factors, presumably through intact neuromuscular synapses. However, it is not yet understood how the muscle regulates the supply of such trophic factors, or if there are additional mechanisms operating to control the fate of the innervating motoneuron. Recent observations have highlighted target independent mechanisms that also operate to support the survival of motoneurons, such as early trophic-independent periods of motoneuron death, trophic factors derived from Schwann cells and selection of motoneurons during pathfinding. Here we review recent investigations into motoneuron cell death when the molecular signalling between motoneurons and muscle has been genetically disrupted. From these studies, we suggest that in addition to trophic factors from muscle and/or Schwann cells, specific adhesive interactions between motoneurons and muscle are needed to regulate motoneuron survival. Such interactions, along with intact synaptic basal lamina, may help to regulate the supply and presentation of trophic factors to motoneurons.