47 resultados para panel data econometrics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The World Health Organization (WHO) MONICA Project is a 10-year study monitoring trends and determinants of cardiovascular disease in geographically defined populations. Data were collected from over 100 000 randomly selected participants in two risk factor surveys conducted approximately 5 years apart in 38 populations using standardized protocols. The net effects of changes in the risk factor levels were estimated using risk scores derived from longitudinal studies in the Nordic countries. The prevalence of cigarette smoking decreased among men in most populations, but the trends for women varied. The prevalence of hypertension declined in two-thirds of the populations. Changes in the prevalence of raised total cholesterol were small but highly correlated between the genders (r = 0.8). The prevalence of obesity increased in three-quarters of the populations for men and in more than half of the populations for women. In almost half of the populations there were statistically significant declines in the estimated coronary risk for both men and women, although for Beijing the risk score increased significantly for both genders. The net effect of the changes in the risk factor levels in the 1980s in most of the study populations of the WHO MONICA Project is that the rates of coronary disease are predicted to decline in the 1990s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of three analytical methods for multiple-frequency bioelectrical impedance analysis (MFBIA) data was assessed. The methods were the established method of Cole and Cole, the newly proposed method of Siconolfi and co-workers and a modification of this procedure. Method performance was assessed from the adequacy of the curve fitting techniques, as judged by the correlation coefficient and standard error of the estimate, and the accuracy of the different methods in determining the theoretical values of impedance parameters describing a set of model electrical circuits. The experimental data were well fitted by all curve-fitting procedures (r = 0.9 with SEE 0.3 to 3.5% or better for most circuit-procedure combinations). Cole-Cole modelling provided the most accurate estimates of circuit impedance values, generally within 1-2% of the theoretical values, followed by the Siconolfi procedure using a sixth-order polynomial regression (1-6% variation). None of the methods, however, accurately estimated circuit parameters when the measured impedances were low (<20 Omega) reflecting the electronic limits of the impedance meter used. These data suggest that Cole-Cole modelling remains the preferred method for the analysis of MFBIA data.