90 resultados para mixed ionic-electronic conducting oxides
Resumo:
Ag-3 was produced by pulsed-nozzle laser vaporisation and jet-cooled in a Ne supersonic expansion. One-color resonant two-photon ionisation (R2PI) spectra of the (B) over tilde(2) E '' <-- (X) over tilde(2) E' transition of Ag-3 were separately measured for all four isotopic combinations. Long vibrational progressions are observed, involving clearly resolved bands at low energy, merging into a dense but resolvable spectrum up to 1000 cm(-1) above the origin. Both the ground (X) over tilde(2) E' and excited (B) over tilde(2) E '' states of Ag-3 are susceptible to Jahn-Teller distortion along the degenerate e' bending coordinate. The Jahn-Teller analysis includes both linear and quadratic terms, simultaneously with the spin-orbit coupling. Following extensive parameter fitting, the absorption spectrum is calculated, and bands assigned. The spin-orbit splitting is quenched below the localization energy, but becomes observable approximate to 300 cm(-1) above the origin.
Resumo:
We describe the twisted affine superalgebra sl(2\2)((2)) and its quantized version U-q[sl(2\2)((2))]. We investigate the tensor product representation of the four-dimensional grade star representation for the fixed-point sub superalgebra U-q[osp(2\2)]. We work out the tensor product decomposition explicitly and find that the decomposition is not completely reducible. Associated with this four-dimensional grade star representation we derive two U-q[osp(2\2)] invariant R-matrices: one of them corresponds to U-q [sl(2\2)(2)] and the other to U-q [osp(2\2)((1))]. Using the R-matrix for U-q[sl(2\2)((2))], we construct a new U-q[osp(2\2)] invariant strongly correlated electronic model, which is integrable in one dimension. Interestingly this model reduces in the q = 1 limit, to the one proposed by Essler et al which has a larger sl(2\2) symmetry.
Resumo:
The ground and excited state geometry of the six-coordinate copper(II) ion is examined in detail using the CuF64- and Cu(H2O)(6)(2+) complexes as examples. A variety of spectroscopic techniques are used to illustrate the relations between the geometric and electronic properties of these complexes through the characterization of their potential energy surfaces.
Resumo:
The effect of controlled In3+ substitution on to the B-site in the perovskite oxygen ion conductor La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM) has been examined with a view to exploring the influence on oxygen ion conductivity. In combination with the electrical conductivity study, detailed microstructural analysis was used to verify the location of the substituting cation and to determine the nature of secondary phase formation. The indium species clearly substituted for Ga3+ on the B-site of the lattice and the electrical conductivity showed a gradual decrease as the In+3 content increased. The interpretation of this data was complicated by the formation of the secondary phases LaInO3 and LaSrGaO4. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
This article discusses the design of a comprehensive evaluation of a community development programme for young people 'at-risk' of self-harming behaviour. It outlines considerations in the design of the evaluation and focuses on the complexities and difficulties associated with the evaluation of a community development programme. The challenge was to fulfil the needs of the funding body for a broad, outcome-focused evaluation while remaining close enough to the programme to accurately represent its activities and potential effects at a community level. Specifically, the strengths and limitations of a mixed-method evaluation plan are discussed with recommendations for future evaluation practice.
Resumo:
A new addition to the family of single-molecule magnets is reported: an Fete cage stabilized with benzoate and pyridonate ligands. Monte Carlo methods have been used to derive exchange parameters within the cage, and hence model susceptibility behavior.
Resumo:
A series of novel macrocyclic tetraaza ligands that incorporate a naphthalene moiety as a photoactive chromophore have been prepared and structurally characterized as their Cu(II) complexes. Variable-temperature photophysical studies have concluded that the luminescence quenching evident in the Cu(H) complexes is due to intramolecular electronic energy transfer (EET). In their free-base forms, these ligands undergo reductive luminescence quenching via photoinduced electron transfer (PET) reactions, with proximate amine lone pairs acting as electron donors. Consequently, the emission behavior can be modulated by variations in pH and/or the presence of other Lewis acids such as Zn(H).