63 resultados para mathematical existence
Resumo:
Formulations of fuzzy integral equations in terms of the Aumann integral do not reflect the behavior of corresponding crisp models. Consequently, they are ill-adapted to describe physical phenomena, even when vagueness and uncertainty are present. A similar situation for fuzzy ODEs has been obviated by interpretation in terms of families of differential inclusions. The paper extends this formalism to fuzzy integral equations and shows that the resulting solution sets and attainability sets are fuzzy and far better descriptions of uncertain models involving integral equations. The investigation is restricted to Volterra type equations with mildly restrictive conditions, but the methods are capable of extensive generalization to other types and more general assumptions. The results are illustrated by integral equations relating to control models with fuzzy uncertainties.
Resumo:
We study the existence of nonnegative solutions of elliptic equations involving concave and critical Sobolev nonlinearities. Applying various variational principles we obtain the existence of at least two nonnegative solutions.
Resumo:
Let K-k(d) denote the Cartesian product of d copies of the complete graph K-k. We prove necessary and sufficient conditions for the existence of a K-k(r)-factorization of K-pn(s), where p is prime and k > 1, n, r and s are positive integers. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A balanced sampling plan excluding contiguous units (or BSEC for short) was first introduced by Hedayat, Rao and Stufken in 1988. These designs can be used for survey sampling when the units are arranged in one-dimensional ordering and the contiguous units in this ordering provide similar information. In this paper, we generalize the concept of a BSEC to the two-dimensional situation and give constructions of two-dimensional BSECs with block size 3. The existence problem is completely solved in the case where lambda = 1.
Resumo:
We study difference equations which arise as discrete approximations to two-point boundary value problems for systems of second-order ordinary differential equations. We formulate conditions which guarantee a priori bounds on first differences of solutions to the discretized problem. We establish existence results for solutions to the discretized boundary value problems subject to nonlinear boundary conditions. We apply our results to show that solutions to the discrete problem converge to solutions of the continuous problem in an aggregate sense. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We study the continuous problem y"=f(x,y,y'), xc[0,1], 0=G((y(0),y(1)),(y'(0), y'(1))), and its discrete approximation (y(k+1)-2y(k)+y(k-1))/h(2) =f(t(k), y(k), v(k)), k = 1,..., n-1, 0 = G((y(0), y(n)), (v(1), v(n))), where f and G = (g(0), g(1)) are continuous and fully nonlinear, h = 1/n, v(k) = (y(k) - y(k-1))/h, for k =1,..., n, and t(k) = kh, for k = 0,...,n. We assume there exist strict lower and strict upper solutions and impose additional conditions on f and G which are known to yield a priori bounds on, and to guarantee the existence of solutions of the continuous problem. We show that the discrete approximation also has solutions which approximate solutions of the continuous problem and converge to the solution of the continuous problem when it is unique, as the grid size goes to 0. Homotopy methods can be used to compute the solution of the discrete approximation. Our results were motivated by those of Gaines.
Resumo:
In computer simulations of smooth dynamical systems, the original phase space is replaced by machine arithmetic, which is a finite set. The resulting spatially discretized dynamical systems do not inherit all functional properties of the original systems, such as surjectivity and existence of absolutely continuous invariant measures. This can lead to computational collapse to fixed points or short cycles. The paper studies loss of such properties in spatial discretizations of dynamical systems induced by unimodal mappings of the unit interval. The problem reduces to studying set-valued negative semitrajectories of the discretized system. As the grid is refined, the asymptotic behavior of the cardinality structure of the semitrajectories follows probabilistic laws corresponding to a branching process. The transition probabilities of this process are explicitly calculated. These results are illustrated by the example of the discretized logistic mapping.
Resumo:
We present the first mathematical model on the transmission dynamics of Schistosoma japonicum. The work extends Barbour's classic model of schistosome transmission. It allows for the mammalian host heterogeneity characteristic of the S. japonicum life cycle, and solves the problem of under-specification of Barbour's model by the use of Chinese data we are collecting on human-bovine transmission in the Poyang Lake area of Jiangxi Province in China. The model predicts that in the lake/marshland areas of the Yangtze River basin: (1) once-early mass chemotherapy of humans is little better than twice-yearly mass chemotherapy in reducing human prevalence. Depending on the heterogeneity of prevalence within the population, targeted treatment of high prevalence groups, with lower overall coverage, can be more effective than mass treatment with higher overall coverage. Treatment confers a short term benefit only, with prevalence rising to endemic levels once chemotherapy programs are stopped (2) depending on the relative contributions of bovines and humans, bovine treatment can benefit humans almost as much as human treatment. Like human treatment, bovine treatment confers a short-term benefit. A combination of human and bovine treatment will dramatically reduce human prevalence and maintains the reduction for a longer period of time than treatment of a single host, although human prevalence rises once treatment ceases; (3) assuming 75% coverage of bovines, a bovine vaccine which acts on worm fecundity must have about 75% efficacy to reduce the reproduction rate below one and ensure mid-term reduction and long-term elimination of the parasite. Such a vaccination program should be accompanied by an initial period of human treatment to instigate a short-term reduction in prevalence, following which the reduction is enhanced by vaccine effects; (4) if the bovine vaccine is only 45% efficacious (the level of current prototype vaccines) it will lower the endemic prevalence, but will not result in elimination. If it is accompanied by an initial period of human treatment and by a 45% improvement in human sanitation or a 30% reduction in contaminated water contact by humans, elimination is then possible. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We investigate difference equations which arise as discrete approximations to two-point boundary value problems for systems of second-order, ordinary differential equations. We formulate conditions under which all solutions to the discrete problem satisfy certain a priori bounds which axe independent of the step-size. As a result, the nonexistence of spurious solutions are guaranteed. Some existence and convergence theorems for solutions to the discrete problem are also presented. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
For Markov processes on the positive integers with the origin as an absorbing state, Ferrari, Kesten, Martinez and Picco studied the existence of quasi-stationary and limiting conditional distributions by characterizing quasi-stationary distributions as fixed points of a transformation Phi on the space of probability distributions on {1, 2,.. }. In the case of a birth-death process, the components of Phi(nu) can be written down explicitly for any given distribution nu. Using this explicit representation, we will show that Phi preserves likelihood ratio ordering between distributions. A conjecture of Kryscio and Lefevre concerning the quasi-stationary distribution of the SIS logistic epidemic follows as a corollary.
Resumo:
Difference equations which discretely approximate boundary value problems for second-order ordinary differential equations are analysed. It is well known that the existence of solutions to the continuous problem does not necessarily imply existence of solutions to the discrete problem and, even if solutions to the discrete problem are guaranteed, they may be unrelated and inapplicable to the continuous problem. Analogues to theorems for the continuous problem regarding a priori bounds and existence of solutions are formulated for the discrete problem. Solutions to the discrete problem are shown to converge to solutions of the continuous problem in an aggregate sense. An example which arises in the study of the finite deflections of an elastic string under a transverse load is investigated. The earlier results are applied to show the existence of a solution; the sufficient estimates on the step size are presented. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Low concentrate density from wet drum magnetic separators in dense medium circuits can cause operating difficulties due to inability to obtain the required circulating medium density and, indirectly, high medium solids losses. The literature is almost silent on the processes controlling concentrate density. However, the common name for the region through which concentrate is discharged-the squeeze pan gap-implies that some extrusion process is thought to be at work. There is no model of magnetics recovery in a wet drum magnetic separator, which includes as inputs all significant machine and operating variables. A series of trials, in both factorial experiments and in single variable experiments, was done using a purpose built rig which featured a small industrial scale (700 mm lip length, 900 turn diameter) wet drum magnetic separator. A substantial data set of 191 trials was generated in this work. The results of the factorial experiments were used to identify the variables having a significant effect on magnetics recovery. It is proposed, based both on the experimental observations of the present work and on observations reported in the literature, that the process controlling magnetic separator concentrate density is one of drainage. Such a process should be able to be defined by an initial moisture, a drainage rate and a drainage time, the latter being defined by the volumetric flowrate and the volume within the drainage zone. The magnetics can be characterised by an experimentally derived ultimate drainage moisture. A model based on these concepts and containing adjustable parameters was developed. This model was then fitted to a randomly chosen 80% of the data, and validated by application to the remaining 20%. The model is shown to be a good fit to data over concentrate solids content values from 40% solids to 80% solids and for both magnetite and ferrosilicon feeds. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Loss of magnetic medium solids from dense medium circuits is a substantial contributor to operating cost. Much of this loss is by way of wet drum magnetic separator effluent. A model of the separator would be useful for process design, optimisation and control. A review of the literature established that although various rules of thumb exist, largely based on empirical or anecdotal evidence, there is no model of magnetics recovery in a wet drum magnetic separator which includes as inputs all significant machine and operating variables. A series of trials, in both factorial experiments and in single variable experiments, was therefore carried out using a purpose built rig which featured a small industrial scale (700 mm lip length, 900 mm diameter) wet drum magnetic separator. A substantial data set of 191 trials was generated in the work. The results of the factorial experiments were used to identify the variables having a significant effect on magnetics recovery. Observations carried out as an adjunct to this work, as well as magnetic theory, suggests that the capture of magnetic particles in the wet drum magnetic separator is by a flocculation process. Such a process should be defined by a flocculation rate and a flocculation time; the latter being defined by the volumetric flowrate and the volume within the separation zone. A model based on this concept and containing adjustable parameters was developed. This model was then fitted to a randomly chosen 80% of the data, and validated by application to the remaining 20%. The model is shown to provide a satisfactory fit to the data over three orders of magnitude of magnetics loss. (C) 2003 Elsevier Science BY. All rights reserved.
Resumo:
Cyclic m-cycle systems of order v are constructed for all m greater than or equal to 3, and all v = 1(mod 2m). This result has been settled previously by several authors. In this paper, we provide a different solution, as a consequence of a more general result, which handles all cases using similar methods and which also allows us to prove necessary and sufficient conditions for the existence of a cyclic m-cycle system of K-v - F for all m greater than or equal to 3, and all v = 2(mod 2m).
Resumo:
Some results are obtained for non-compact cases in topological vector spaces for the existence problem of solutions for some set-valued variational inequalities with quasi-monotone and lower hemi-continuous operators, and with quasi-semi-monotone and upper hemi-continuous operators. Some applications are given in non-reflexive Banach spaces for these existence problems of solutions and for perturbation problems for these set-valued variational inequalities with quasi-monotone and quasi-semi-monotone operators.