57 resultados para market analysis
Resumo:
Non-technical losses (NTL) identification and prediction are important tasks for many utilities. Data from customer information system (CIS) can be used for NTL analysis. However, in order to accurately and efficiently perform NTL analysis, the original data from CIS need to be pre-processed before any detailed NTL analysis can be carried out. In this paper, we propose a feature selection based method for CIS data pre-processing in order to extract the most relevant information for further analysis such as clustering and classifications. By removing irrelevant and redundant features, feature selection is an essential step in data mining process in finding optimal subset of features to improve the quality of result by giving faster time processing, higher accuracy and simpler results with fewer features. Detailed feature selection analysis is presented in the paper. Both time-domain and load shape data are compared based on the accuracy, consistency and statistical dependencies between features.
Resumo:
This paper presents load profiles of electricity customers, using the knowledge discovery in databases (KDD) procedure, a data mining technique, to determine the load profiles for different types of customers. In this paper, the current load profiling methods are compared using data mining techniques, by analysing and evaluating these classification techniques. The objective of this study is to determine the best load profiling methods and data mining techniques to classify, detect and predict non-technical losses in the distribution sector, due to faulty metering and billing errors, as well as to gather knowledge on customer behaviour and preferences so as to gain a competitive advantage in the deregulated market. This paper focuses mainly on the comparative analysis of the classification techniques selected; a forthcoming paper will focus on the detection and prediction methods.
Resumo:
Foreign exchange trading has emerged in recent times as a significant activity in many countries. As with most forms of trading, the activity is influenced by many random parameters so that the creation of a system that effectively emulates the trading process is very helpful. In this paper, we try to create such a system with a genetic algorithm engine to emulate trader behaviour on the foreign exchange market and to find the most profitable trading strategy.
Resumo:
This article explores consumer Web-search satisfaction. It commences with a brief overview of the concepts consumer information search and consumer satisfaction. Consumer Web adoption issues are then briefly discussed and the importance of consumer search satisfaction is highlighted in relation to the adoption of the Web as an additional source of consumer information. Research hypotheses are developed and the methodology of a large scale consumer experiment to record consumer Web search behaviour is described. The hypotheses are tested and the data explored in relation to post-Web-search satisfaction. The results suggest that consumer post-Web-search satisfaction judgments may be derived from subconscious judgments of Web search efficiency, an empirical calculation of which is problematic in unlimited information environments such as the Web. The results are discussed and a future research agenda is briefly outlined.
Resumo:
This paper describes the application of a new technique, rough clustering, to the problem of market segmentation. Rough clustering produces different solutions to k-means analysis because of the possibility of multiple cluster membership of objects. Traditional clustering methods generate extensional descriptions of groups, that show which objects are members of each cluster. Clustering techniques based on rough sets theory generate intensional descriptions, which outline the main characteristics of each cluster. In this study, a rough cluster analysis was conducted on a sample of 437 responses from a larger study of the relationship between shopping orientation (the general predisposition of consumers toward the act of shopping) and intention to purchase products via the Internet. The cluster analysis was based on five measures of shopping orientation: enjoyment, personalization, convenience, loyalty, and price. The rough clusters obtained provide interpretations of different shopping orientations present in the data without the restriction of attempting to fit each object into only one segment. Such descriptions can be an aid to marketers attempting to identify potential segments of consumers.
Resumo:
Although the current level of organic production in industrialised countries amounts to little more than 1-2 percent, it is recognised that one of the major issues shaping agricultural output over the next several decades will be the demand for organic produce (Dixon et al. 2001). In Australia, the issues of healthy food and environmental concern contribute to increasing demand and market volumes for organic produce. However, in Indonesia, using more economical inputs for organic production is a supply-side factor driving organic production. For individual growers and processors, conversion from conventional to organic agriculture is often a challenging step, entailing a thorough revision of established practices and heightened market insecurity. This paper examines the potential for a systems approach to the analysis of the conversion process, to yield insights for household and community decisions. A framework for applying farming systems research to investigate the benefits of organic production in both Australia and Indonesia is discussed. The framework incorporates scope for farmer participation, crucial to the understanding of farming systems; analysis of production; and relationships to resources, technologies, markets, services, policies and institutions in their local cultural context. A systems approach offers the potential to internalise the external effects that may be constraining decisions to convert to organic production, and for the design of decision-making tools to assist households and the community. Systems models can guide policy design and serve as a mechanism for predicting the impact of changes to the policy and market environments. The increasing emphasis of farming systems research on community and environment in recent years is in keeping with the proposed application to organic production, processing and marketing issues. The approach will also facilitate the analysis of critical aspects of the Australian production, marketing and policy environment, and the investigation of these same features in an Indonesian context.