81 resultados para magnesium casting alloys
Resumo:
Factors that influence alloying zirconium to magnesium with a Mg-33.3Zr master alloy and the subsequent grain refinement are discussed based on a large number of experiments conducted at the laboratory scale (up to 30 kg of melt). It is shown that the zirconium particles released from the Zirmax(R) master alloy must be brought into thorough contact with the melt by an appropriate stirring process in order to attain a good dissolution of zirconium. The influence of alloying temperature on the recovery of zirconium was found to be negligible in the range from 680 to 780 degreesC. An ideal zirconium alloying process should end up with both high soluble and high total zirconium in the melt in order to achieve the best grain refinement in the final alloy. The distribution of zirconium in the final alloy microstructure is inhomogeneous and almost all of the zirconium in solution is concentrated in zirconium-rich cores in the microstructure.
Resumo:
A new zirconium-rich magnesium-zirconium master alloy (designated AM-cast) has been developed by the CRC for Cast Metals Manufacturing in collaboration with Australian Magnesium Corporation for use as a grain refiner for magnesium alloys that do not contain aluminium. This work describes the microstructural characteristics of this new grain refiner and its grain refining ability when added to different magnesium alloys under various conditions (alloying temperature from 680 °C to 750 °C; weight of melt from 1 kg to 150 kg and sample thickness from 7 mm to 62 mm). Owing to its highly alloyable microstructure, AM-cast can be readily introduced into molten magnesium at any temperature when assisted by a few minutes of stirring or puddling. Little sludge has been found at the bottom of the alloying vessel in these trials due to the fine zirconium particles contained in the master alloy. The recovery of zirconium is normally in the range from 40% to 60% with respect to 1% zirconium addition as the master alloy. It is shown that this new master alloy is an excellent grain refiner for aluminium-free magnesium alloys.
Resumo:
The effects of boron and strontium interactions on the eutectic silicon in hypoeutectic Al-Si alloys have been studied. Samples were prepared from an AI-I 0 mass%Si base alloy with different Al-B additions, alone and in combination with strontium. In alloys containing no strontium, boron additions do not cause modification of the eutectic silicon, while in strontium containing alloys, boron additions reduce the level of modification of the eutectic silicon. Thermal analysis parameters and eutectic silicon microstructures were investigated with respect to the Sr to B ratio. In order to modify the eutectic silicon, a Sr/B ratio exceeding 0.4 is required.
Resumo:
The effects of boron on the eutectic modification and solidification mode of hypoeutectic Al-Si alloys have been studied adding different boride phases. The results show that boron does not cause modification of the eutectic silicon. Boron-containing samples display eutectic nucleation and growth characteristics similar to that of unmodified alloys. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
To capitalise on the strengthening potential of zirconium as a potent grain refiner for magnesium alloys, the mechanisms of adding zirconium to magnesium and its subsequent grain refining action need to be understood. Using a Mg-33.3Zr master alloy (Zirmax supplied by Magnesium Elektron Ltd) as a zirconium alloying additive, the influence of different alloying conditions on the dissolution of zirconium in magnesium was investigated. It was found that owing to the highly alloyable microstructure of Zirmax, the dissolution of zirconium was generally complete within a few minutes in the temperature range 730 to 780degreesC. Prolonging and/or intensifying stirring were found to have no conspicuous influence on further enhancing the dissolution of zirconium. In all cases studied, the average grain size increased with increasing holding time at temperature while the total zirconium content decreased. The finest grain structure and highest total zirconium content corresponded to sampling immediately after stirring. Pick up of iron by molten magnesium from the mild steel crucibles used for melting and holding, was significantly delayed or avoided in the temperature range 730 to 780degreesC by coating the crucibles with boron nitride. It is therefore feasible to conduct zirconium alloying at 730degreesC without the need of a considerable excess of Zirmax addition using a properly coated or lined steel crucible.
Resumo:
Corrosion of magnesium engine components by coolant is an important issue in the automotive industry where magnesium alloys may be used. It is of significance to understand the corrosion behaviour of pure magnesium in ethylene glycol solutions, as this can provide a basis for developing new coolants for magnesium alloy engine blocks. In this paper, through corrosion and electrochemical tests, it was found that the corrosion rate of magnesium decreased with increasing concentration of ethylene glycol. Individual contaminants, such as NaCl, NaHCO3, Na2SO4 and NaCl can make aqueous ethylene glycol solution more corrosive to magnesium. However, in NaCl contaminated ethylene glycol, NaHCO3 and Na2SO4 showed some inhibition effect. The solution resistivity played an important role in the corrosion of magnesium in ethylene glycol solutions, and the competitive adsorption of ethylene glycol and the contaminants on the magnesium surface was also responsible for the observed corrosion behaviours. The corrosion of magnesium in ethylene glycol can be effectively inhibited by addition of fluorides that react with magnesium and form a protective film on the surface. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The corrosion behaviour of die cast magnesium alloy AZ91D aged at 160degreesC was investigated. The corrosion rate of the alloy decreases with ageing time in the initial stages and then increases again at ageing times greater than 45 h. The dependence of the corrosion rate on ageing time can be related to the changes in microstructure and local composition during ageing. Precipitation of the beta phase (Mg17Al12) occurs exclusively along the grain boundaries during ageing. The beta phase acts as a barrier, resulting in a decreasing corrosion rate in the initial stages of ageing. In the later stages, the decreasing aluminium content of alpha grains makes the alpha matrix more active, causing an increase in the corrosion rate. Electrochemical testing results also confirm the combined effects of the changes in alpha and beta phases on the corrosion resistance of the aged die cast AZ91D alloy. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Selective laser sintering has been used to fabricate an aluminium alloy powder preform which is subsequently debound and infiltrated with a second aluminium alloy. This represents a new rapid manufacturing system for aluminium that can be used to fabricate large, intricate parts. The base powder is an alloy such as AA6061. The infiltrant is a binary or higher-order eutectic based on either Al-Cu or At-Si. To ensure that infiltration occurs without loss of dimensional precision, it is important that a rigid skeleton forms prior to infiltration. This can be achieved by the partial transformation of the aluminium to aluminium nitride. In order for this to occur throughout the component, magnesium powder must be added to the alumina support powder which surrounds the part in the furnace. The magnesium scavenges the oxygen and thereby creates a microclimate in which aluminium nitride can form. The replacement of the ionocovalent Al2O3 with the covalent AlN on the surface of the aluminium powders also facilitates wetting and thus spontaneous and complete infiltration. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The effect of iron on the grain refinement of high-purity Mg-3%Al and Mg-91%Al alloys has been investigated using anhydrous FeCl3 as an iron additive at 750degreesC in carbon-free aluminium titanite crucibles. It was shown that grain refinement was readily achievable for both alloys. Fe- and Al-rich intermetallic particles were observed in many magnesium grains. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Understanding and controlling the eutectic solidification process in Al-Si alloys permits prediction of the formation of casting porosity, eventually leading to methods for its control and elimination. In addition, it enables control of eutectic structure, silicon morphology, and eutectic grain size to further improve the alloy properties. This paper presents the current understanding of eutectic solidification in hypoeutectic Al-Si foundry alloys and the relationship between eutectic solidification and porosity formation. New concepts in engineering eutectic solidification are also explored.
Resumo:
In addition to a change in silicon morphology, modification of aluminium-silicon alloys with strontium or sodium increases the size of the eutectic grains. To determine the mechanism responsible, eutectic solidification in commercial purity and ultra-high purity aluminium-si I icon alloys, with and without strontium additions, was examined by a quenching technique. In the commercial unmodified alloy, nucleation was prolific while in the high-purity unmodified alloy few eutectic grains nucleated. The addition of strontium to the commercial alloy reduced the number of eutectic grains that nucleated. Addition of strontium to the high-purity alloy did not significantly alter nucleation. It is concluded that commercial purity alloys contain a large number of potent nuclei that are susceptible to poisoning by impurity modification. The flake-to-fibre transition that occurs with impurity modification is shown to be independent of any change in eutectic nucleation mode and frequency. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Strontium modification is known to alter the amount, characteristics, and distribution of porosity in Al-Si castings. Although many theories have been proposed to account for these effects, most can be considered inadequate because of their failure to resolve contradictions and discrepancies in the literature. In an attempt to critically appraise some of these theories, the amount, distribution, and morphology of porosity were examined in sand-cast plates of Sr-free and Sr-containing pure Al, Al-l wt pet Si, and Al-9 wt pet Si alloys. Statistical significance testing was used to verify apparent trends in the porosity data. No apparent differences in the amount, distribution, and morphology of porosity were observed between Sr-free and Sr-containing alloys with no or very small eutectic volume fractions. However, Sr modification significantly changed the amount, distribution, and morphology of porosity in alloys with a significant volume fraction of eutectic. ne addition of Sr reduced porosity in the hot spot region of the casting, and the pores became well dispersed and rounded. This result can be explained by considering the combined effect of the casting design and the differences in the pattern of eutectic solidification between unmodified and Sr-modified alloys.
Resumo:
Additions of strontium to hypoeutectic aluminum-silicon alloys modify the morphology of the eutectic silicon phase from a coarse platelike structure to a fine fibrous structure. Thermal analysis, interrupted solidification, and microstructural examination of sand castings in this work revealed that, in addition to a change in silicon morphology, modification with strontium also causes an increase in the size of eutectic grains. The eutectic grain size increases because fewer grains nucleate, possibly due to poisoning of the phosphorus-based nucleants, that are active in the unmodified alloy. A simple growth model is developed to estimate the interface velocity during solidification of a eutectic grain. The model confirms, independent of microstructural observations, that the addition of 100 ppm strontium increases the eutectic grain size by at least an order of magnitude compared with the equivalent unmodified alloy. The model predicts that the growth velocity varies significantly during eutectic growth. At low strontium levels, these variations may be sufficient to cause transitions between flake and fibrous silicon morphologies depending on the casting conditions. The model can be used to rationally interpret the eutectic grain structure and silicon morphology of fully solidified aluminum-silicon castings and, when coupled with reliable thermal data, can be used to estimate the eutectic grain size.