96 resultados para lateral hypothalamic area


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study conducted in 1999/2000 was designed to evaluate the efficacy of praziquantel against Schistosoma japonicum in an area with repeated chemotherapy (Area A) compared with a newly identified endemic focus (Area B) in Hunan Province, China. The population size was 2015 and 2180 in Areas A and B, respectively, of which 1129 and 1298 subjects received stool examination. A total of 230 subjects were identified by the Kato-Katz technique (4 smears per person) as being infected with S. japonicum, 124 in Area A (prevalence 11 %) and 106 in Area B (prevalence 8.2%). They were treated with a single oral dose of praziquantel (40 mg/kg) in the non-transmission season. A follow-up stool examination was made 50 days after treatment. Among the 220 cases followed, 22 were found stool-egg-positive, with an overall cure rate of 90 %, and 99 % reduction of infection intensity (eggs per gram stool). No significant difference was found in cure rates between the 2 areas (89.7% vs 90.3%). The efficacy of the drug in the area with repeated chemotherapy was not significantly different from that in the newly identified endemic focus. This study, therefore, suggests that the efficacy of praziquantel against S. japonicum has not changed in the Dongting Lake region after more than 14 years of mass chemotherapy, and there is no evidence of tolerance or resistance of S. japonicum against praziquantel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Medial parvocellular paraventricular corticotropin-releasing hormone (mPVN CRH) cells are critical in generating hypothalamic-pituitary-adrenal (HPA) axis responses to systemic interleukin-1 beta (IL-1 beta). However, although it is understood that catecholamine inputs are important in initiating mPVN CRH cell responses to IL-1 beta, the contributions of distinct brainstem catecholamine cell groups are not known. We examined the role of nucleus tractus solitarius (NTS) and ventrolateral medulla (VLM) catecholamine cells in the activation of mPVN CRH, hypothalamic oxytocin (OT) and central amygdala cells in response to IL-1 beta (1 mug/kg, i.a.). Immunolabelling for the expression of c-fos was used as a marker of neuronal activation in combination with appropriate cytoplasmic phenotypic markers. First we confirmed that PVN 6-hydroxydopamine lesions, which selectively depleted catecholaminergic terminals, significantly reduced IL-1 beta -induced mPVN CRH cell activation. The contribution of VLM (A1/C1 cells) versus NTS (A2 cells) catecholamine cells to mPVN CRH cell responses was then examined by placing ibotenic acid lesions in either the VLM or NTS. The precise positioning of these lesions was guided by prior retrograde tracing studies in which we mapped the location of IL-1 beta -activated VLM and NTS cells that project to the mPVN. Both VLM and NTS lesions reduced the mPVN CRH and OT cell responses to IL-1 beta. Unlike VLM lesions, NTS lesions also suppressed the recruitment of central amygdala neurons. These studies provide novel evidence that both the NTS and VLM catecholamine cells have important, but differential, contributions to the generation of IL-1 beta -induced HPA axis responses. Copyright (C) 2001 S. Karger AG, Basel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The treatment of lateral epicondylalgia, a widely-used model of musculoskeletal pain in the evaluation of many physical therapy treatments, remains somewhat of an enigma. The protagonists of a new treatment technique for lateral epicondylalgia report that it produces substantial and rapid pain relief, despite a lack of experimental evidence. A randomized, double blind, placebo-controlled repeated-measures study evaluated the initial effect of this new treatment in 24 patients with unilateral, chronic lateral epicondylalgia. Pain-free grip strength was assessed as an outcome measure before, during and after the application of the treatment, placebo and control conditions. Pressure-pain thresholds were also measured before and after the application of treatment, placebo and control conditions. The results demonstrated a significant and substantial increase in pain-free grip strength of 58% (of the order of 60 N) during treatment but not during placebo and control. In contrast, the 10% change in pressure-pain threshold after treatment, although significantly greater than placebo and control, was substantially smaller than the change demonstrated for pain-free grip strength. This effect was only present in the affected limb. The selective and specific effect of this treatment technique provides a valuable insight into the physical modulation of musculoskeletal pain and requires further investigation. (C) 2001 Harcourt Publishers Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyramidal neurones were injected with Lucifer Yellow in slices cut tangential to the surface of area 7m and the superior temporal polysensory area (STP) of the macaque monkey. Comparison of the basal dendritic arbors of supra- and infragranular pyramidal neurones (n=139) that were injected in the same putative modules in the different cortical areas revealed variation in their structure. Moreover, there were relative differences in dendritic morphology of supra- and infragranular pyramidal neurones in the two cortical areas. Shell analyses revealed that layer III pyramidal neurones in area STP had considerably higher peak complexity (maximum number of dendritic intersections per Shell circle) than those in layer V, whereas peak complexities were similar for supra- and infragranular pyramidal neurones in area 7m. In both cortical areas, the basal dendritic trees of layer m pyramidal neurones were characterized by a higher spine density than those in layer V. Calculations of the total number of dendritic spines in the average basal dendritic arbor revealed that layer V pyramidal neurones in area 7m had twice as many spines as cells in layer III. (4535 and 2294, respectively). A similar calculation for neurones in area STP revealed that layer III pyramidal neurones had approximately the same number of spines as cells in layer V (3585 and 3850 spines, respectively). Relative differences in the branching patterns of, and the number of spines in, the basal dendritic arbors of supra- and infragranular pyramidal neurones in the different cortical areas may allow for integration of different numbers of inputs, and different degrees of dendritic processing. These results support the thesis that intra-areal circuitry differs in different cortical areas.