48 resultados para infrared reflectivity
Resumo:
The proanthocyanidin (PA) status of 116 accessions from the Leucaena genus representing 21 species, 6 subspecies, 3 varieties and 4 interspecific hybrids was evaluated under uniform environmental and experimental conditions at Redland Bay, Queensland, Australia in October 1997. The PA content of lyophilized youngest fully expanded leaves was measured spectrophotometrically by the butanol/HCl assay referenced to L. leucocephala ssp. glabrata standard PA and expressed as L. leucocephala ssp. glabrata PA equivalents (LLPAE). Considerable interspecific variation in PA concentration existed within the genus, ranging from 0-339 g LLPAE/kg dry matter (DM). Taxa including L. confertiflora, L. cuspidata, L. esculenta and L. greggii contained very high (> 180 g LLPAE/kg DM) PA concentrations. Similarly, many agronomically superior accessions from L. diversifolia, L. pallida and L. trichandra contained extremely high (up to 250 g LLPAE/kg DM) PA concentrations, although these taxa exhibited wide intraspecific variation in PA content offering the potential to select accessions with lower (120-160 g LLPAE/kg DM) PA content. Commercial cultivars of L. leucocephala ssp. glabrata, known to produce forage of superior quality, contained low amounts of PA (33-39 g LLPAE/kg DM). Artificial interspecific hybrids had PA contents intermediate to those of both parents, Lesser-known taxa. including L. collinsii, L. lanceolata, L. lempirana, L. macrophylla, L. magnifica, L. multicapitula, L. salvadorensis and L. trichodes, contained undetectable to low (0-36 g LLPAE/kg DM) quantities of PA and have potential as parents to breed interspecific hybrids of low PA status and superior forage quality. Extractable PA was the dominant PA component, accounting for 91% of total PA within the genus. Regression analysis of accession ranks from different experiments compared to these results indicated that genetic regulation of Leucaena spp. PA content was consistent (P < 0.01) under different edapho-climatic environments. The distribution of PA within the Leucaena genus did not concur with the predictions of various evolutionary and phylogenetic plant defence theories.
Resumo:
The radio frequency (RF) plasma-modified surfaces of kaolinite were investigated by diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) and deuteration techniques to determine the nature of RF plasma-induced surface functional groups, the altered sites in the lattice, and interaction mechanism between RF plasma and the surface of the kaolinite. It has been concluded that the RF plasma-induced infrared (IR) vibration absorption bands at 2805, 3010, and 3100 cm(-1) are attributable to the stretching vibration of hydrogen-bonded hydroxyl groups, and the band at 1407 cm(-1) is attributable to the bending vibration of (HO-)Al-O or (HO-)Si-O groupings with hydrogen-bonded hydroxyl groups. Structural alteration occurred on both the surface and subsurface region of the kaolinite during RF plasma treatment. Further structural alteration or adjustment was also observed on well-modified and well-deuterated kaolinite. There are two types of OD bands visible in the DRIFT spectra of this kaolinite, one type which decreased rapidly as a function of time in moist air, and the other which remained unchanged during the measurement. Furthermore, the appearance of broad IR bands at 3500-3100 cm(-1) as a result of deuteration is evidence of structural disturbance by RF plasma treatment lattice deuteration. An RF plasma-induced hydrogen bonding model on the surface of the kaolinite is proposed.
Resumo:
X-ray reflectivity of bovine and sheep surfactant-associated protein B (SP-B) monolayers is used in conjunction with pressure-area isotherms and protein models to suggest that the protein undergoes changes in its tertiary structure at the air/water interface under the influence of surface pressure, indicating the likely importance of such changes to the phenomena of protein squeeze out as well as lipid exchange between the air-water interface and subphase structures. We describe an algorithm based on the well-established box- or layer-models that greatly assists the fitting of such unknown scattering-length density profiles, and which takes the available instrumental resolution into account. Scattering-length density profiles from neutron reflectivity of bovine SP-B monolayers on aqueous subphases are shown to be consistent with the exchange of a large number of labile protons as well as the inclusion of a significant amount of water, which is partly squeezed out of the protein monolayer at elevated surface pressures.