133 resultados para horne-zeilinger entanglement
Resumo:
We show that two evanescently coupled chi((2)) parametric oscillators provide a tunable bright source of quadrature squeezed light, Einstein-Podolsky-Rosen correlations and quantum entanglement. Analysing the system in the above threshold regime, we demonstrate that these properties can be controlled by adjusting the coupling strengths and the cavity detunings. As this can be implemented with integrated optics, it provides a possible route to rugged and stable EPR sources. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
We show that the intracavity Kerr nonlinear coupler is a potential source of bright continuous variable entangled light beams which are tunable and spatially separated. We use a linearized fluctuation analysis to calculate the necessary correlations in regimes where it is valid. This means that we are treating regimes where the system exhibits Gaussian statistics so that well-known criteria are both necessary and sufficient to demonstrate entanglement. This system may be realized with integrated optics and thus provides a potentially rugged and stable source of bright entangled beams.
Resumo:
We compare theoretically the tripartite entanglement available from the use of three concurrent x(2) nonlinearities and three independent squeezed states mixed on beamsplitters, using an appropriate version of the van Loock-Furusawa inequalities. We also define three-mode generalizations of the Einstein-Podolsky-Rosen paradox which are an alternative for demonstrating the inseparability of the density matrix.
Resumo:
In this work, we analyse and compare the continuous variable tripartite entanglement available from the use of two concurrent or cascaded X (2) nonlinearities. We examine both idealized travelling-wave models and more experimentally realistic intracavity models, showing that tripartite entangled outputs are readily producible. These may be a useful resource for applications such as quantum cryptography and teleportation.
Resumo:
In order to quantify quantum entanglement in two-impurity Kondo systems, we calculate the concurrence, negativity, and von Neumann entropy. The entanglement of the two Kondo impurities is shown to be determined by two competing many-body effects, namely the Kondo effect and the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, I. Due to the spin-rotational invariance of the ground state, the concurrence and negativity are uniquely determined by the spin-spin correlation between the impurities. It is found that there exists a critical minimum value of the antiferromagnetic correlation between the impurity spins which is necessary for entanglement of the two impurity spins. The critical value is discussed in relation with the unstable fixed point in the two-impurity Kondo problem. Specifically, at the fixed point there is no entanglement between the impurity spins. Entanglement will only be created [and quantum information processing (QIP) will only be possible] if the RKKY interaction exchange energy, I, is at least several times larger than the Kondo temperature, T-K. Quantitative criteria for QIP are given in terms of the impurity spin-spin correlation.
Resumo:
We investigate boundary critical phenomena from a quantum-information perspective. Bipartite entanglement in the ground state of one-dimensional quantum systems is quantified using the Renyi entropy S-alpha, which includes the von Neumann entropy (alpha -> 1) and the single-copy entanglement (alpha ->infinity) as special cases. We identify the contribution of the boundaries to the Renyi entropy, and show that there is an entanglement loss along boundary renormalization group (RG) flows. This property, which is intimately related to the Affleck-Ludwig g theorem, is a consequence of majorization relations between the spectra of the reduced density matrix along the boundary RG flows. We also point out that the bulk contribution to the single-copy entanglement is half of that to the von Neumann entropy, whereas the boundary contribution is the same.
Resumo:
We use robust semidefinite programs and entanglement witnesses to study the distillability of Werner states. We perform exact numerical calculations that show two-undistillability in a region of the state space, which was previously conjectured to be undistillable. We also introduce bases that yield interesting expressions for the distillability witnesses and for a tensor product of Werner states with an arbitrary number of copies.
Resumo:
Entanglement purification protocols play an important role in the distribution of entangled systems, which is necessary for various quantum information processing applications. We consider the effects of photodetector efficiency and bandwidth, channel loss and mode mismatch on the operation of an optical entanglement purification protocol. We derive necessary detector and mode-matching requirements to facilitate practical operation of such a scheme, without having to resort to destructive coincidence-type demonstrations.
Resumo:
In a recent paper Yu and Eberly [Phys. Rev. Lett. 93, 140404 (2004)] have shown that two initially entangled and afterward not interacting qubits can become completely disentangled in a finite time. We study transient entanglement between two qubits coupled collectively to a multimode vacuum field, assuming that the two-qubit system is initially prepared in an entangled state produced by the two-photon coherences, and find the unusual feature that the irreversible spontaneous decay can lead to a revival of the entanglement that has already been destroyed. The results show that this feature is independent of the coherent dipole-dipole interaction between the atoms but it depends critically on whether or not collective damping is present.
Mixed-state entanglement in the light of pure-state entanglement constrained by superselection rules
Resumo:
We show that the classification of bi-partite pure entangled states when local quantum operations are restricted, e.g., constrained by local superselection rules, yields a structure that is analogous in many respects to that of mixed-state entanglement, including such exotic phenomena as bound entanglement and activation. This analogy aids in resolving several conceptual puzzles in the study of entanglement under restricted operations. Specifically, we demonstrate that several types of quantum optical states that possess confusing entanglement properties are analogous to bound entangled states. Also, the classification of pure-state entanglement under restricted operations can be much simpler than for mixed state entanglement. For instance, in the case of local Abelian superselection rules all questions concerning distillability can be resolved.
Resumo:
We propose a review of recent developments on entanglement and nonclassical effects in collective two-atom systems and present a uniform physical picture of the many predicted phenomena. The collective effects have brought into sharp focus some of the most basic features of quantum theory, such as nonclassical states of light and entangled states of multiatom systems. The entangled states are linear superpositions of the internal states of the system which cannot be separated into product states of the individual atoms. This property is recognized as entirely quantum-mechanical effect and have played a crucial role in many discussions of the nature of quantum measurements and, in particular, in the developments of quantum communications. Much of the fundamental interest in entangled states is connected with its practical application ranging from quantum computation, information processing, cryptography, and interferometry to atomic spectroscopy.