93 resultados para hepatic clearance
Resumo:
Measurement of hepatic oxygen extraction was performed on six healthy Greyhound dogs over a two hour period. The Greyhounds were anaesthetised and a right subcostal surgical incision performed. Ultrasonic flow transducers were used to measure flow rate in the hepatic artery and the portal vein. The blood oxygen tensions in arterial blood and in the portal and hepatic veins were also measured. Hepatic oxygen extraction remained stable throughout the study, despite a steady decline in arterial blood pressure. The methodology described in this study provides a direct measure of oxygen uptake by the liver in the dog and could readily be used to investigate hepatic uptake of drugs. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Activated hepatic stellate cells have been implicated in the fibrogenic process associated with iron overload, both in animal models and in human hemochromatosis. Previous studies have evaluated the role of ferritin/ferritin receptor interactions in the activation of stellate cells and subsequent fibrogenesis; however, the role of transferrin in hepatic stellate cell biology is unknown. This study was designed to identify and characterize the stellate cell transferrin receptor and to evaluate the influence of transferrin on stellate cell activation. Identification and characterization of the stellate cell transferrin receptor was determined by competitive displacement assays. The effect of transferrin on stellate cell activation was assessed using western blot analysis for alpha-smooth muscle actin expression, [H-3]Thymidine incorporation, and real-time RT-PCR for procollagen 1(I) mRNA expression. A specific receptor for rat transferrin was observed on activated but not quiescent stellate cells. Transferrin significantly increased the expression of alpha-smooth muscle actin, but caused a decrease in proliferation. Transferrin induced a significant increase in procollagen alpha1(I) mRNA expression. In conclusion, this study has demonstrated for the first time a specific, high affinity receptor for rat transferrin on activated hepatic stellate cells, which via interaction with transferrin regulates stellate cell activation. This suggests that transferrin may be an important factor in the activation of hepatic stellate cells in conditions of iron overload.
Resumo:
Background/Aims: Host factors such as increased body mass index (BMI) and genotype-specific viral factors contribute to the development of steatosis in patients with chronic hepatitis C (HCV). We hypothesized that host metabolic factors associated with increased BMI may play a role in disease progression. Methods: Fasting serum was collected from 160 patients with chronic HCV at the time of liver biopsy and 45 age, gender and BMI matched controls, and assessed for levels of insulin, c-peptide and leptin. Results: Patients with viral genotype 3 had more severe steatosis (P = 0.0001) and developed stages 1 and 2 fibrosis at a younger age (P < 0.05) than patients with genotype 1. For both genotypes, overweight patients had significantly more steatosis and increased insulin and leptin levels. In contrast to lean patients, there was a statistically significant increase in circulating insulin levels with increasing fibrosis in overweight patients with chronic HCV (P = 0.03). Following multivariate analysis, insulin was independently associated with fibrosis (P = 0.046) but not inflammation (P = 0.83). There was no association between serum leptin levels and stage of fibrosis. Conclusions: Increasing circulating insulin levels may be a factor responsible for the association between BMI and fibrosis in patients with HCV, irrespective of viral genotype. (C) 2003 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Resumo:
Standard dosage recommendations for beta-lactam antibiotics can result in very low drug levels in intensive care (IC) patients without renal dysfunction. We compared the pharmacokinetics of two fourth-generation cephalosporins, cefepime and cefpirome, and examined the relationship of drug clearance (CL) to creatinine clearance (CLCR). Two separate but similar pharmacokinetic studies (which used 2 g twice daily for each antibiotic) were conducted. Blood was sampled after an initial and a subsequent antibiotic dose. Drug plasma concentrations were measured, and pharmacokinetic analyses were conducted and compared. The pharmacokinetics of cefepime and cefpirome are similar in IC patients. Any differences in drug CL can largely be attributed to differences in CLCR. Despite normal plasma creatinine concentrations, 54% of patients' antibiotic concentrations were less than the minimum inhibitory concentration (MIC) (4 mg/L) for >20% of the dosing interval. Thirty-four percent of patients had CLCR >144 mL/min (20% higher than the expected maximum of 120 mL/min). Only CLCR was an independent predictor of antibiotic CL. Time above MIC was predicted only by CLCR. Some IC patients have a very large CLCR which results in very low levels of studied antibiotics. Either shortening the dosage interval or using continuous infusions would prevent low levels and keep troughs above the MIC for longer periods. In view of the lack of bedside measurement of cephalosporin levels, we suggest that more frequent use be made of CLCR to allow prediction of small concentrations clinically.
Resumo:
A retrospective review was undertaken in 744 patients who were dose-individualized with gentamicin once daily to evaluate a change in gentamicin clearance as a potential predictor of nephrotoxicity. The definition of nephrotoxicity was chosen to be a change in creatinine clearance greater than 20%. Similarly, a change in gentamicin clearance of greater than 20% was also considered a possible index of nephrotoxicity. Four criteria were developed to assess the usefulness of gentamicin clearance as a predictor of nephrotoxicity. Following the application of the inclusion/exclusion criteria, 132 patients were available for the analysis. The sensitivity, specificity, positive predictive value, and negative predictive value were assessed for each of the criteria. Receiver operating characteristic (ROC) curves were produced to determine if an optimum value in the change of gentamicin clearance could be found to maximize sensitivity and specificity. The overall incidence of nephrotoxicity based on a decrease in creatinine clearance by 20% or more was 3.8%. Women were overrepresented in the nephrotoxic group [71.4% versus 40.1% (P = 0.0025)]. Patients with nephrotoxicity had statistically longer treatment periods, increased cumulative dose, and more dosing predictions (P < 0.05 in each case). The sensitivity of the criteria ranged from 43 to 46%, and specificity ranged from 93 to 99%. The positive and negative predictive values ranged from 63 to 94% and 86 to 89%, respectively. In those patients in whom nephrotoxicity was predicted from a change in gentamicin clearance, this change occurred on average 3 days before the change in creatinine clearance (P < 0.05). A change in gentamicin clearance to predict nephrotoxicity may be a useful addition to current monitoring methods, although it is not the complete answer.
Resumo:
Modulation of the cytochrome P450 (CYP) monooxygenase system by cadmium was investigated in male, adult DBA/2J mice treated with a single dose (16 mumol/kg body weight, i.p.) of cadmium chloride (CdCl2). Total CYP content of liver and kidney microsomes decreased maximally (56% and 85%, respectively) 24 and 18 h, respectively, after CdCl2 treatment. Progressive increases of hepatic coumarin 7-hydroxylase (COH) activity; indicative of CYP2A5 activity, relative to the total CYP content were seen at 8 h (2-fold), 12 h (3-fold), 18 h (12-fold), and 24 h (15-fold). Similar changes were seen in the kidney. Liver and kidney CYP2A5 mRNA levels increased maximally 12 and 4 h after treatment and decreased to almost half 6 h later. In contrast, kidney and liver CYP2A5 protein levels increased maximally at 18 and 24 h. The CYP2A5 mRNA levels in the kidney and liver increased after Cd treatment in Nrf2 +/+ but not in Nrf2 -/- mouse. This study demonstrates that hepatic and kidney CYP2A5 is upregulated by cadmium with a somewhat faster response in the kidney than the liver. The strong upregulation of the CYP2A5 both at mRNA and enzyme activity levels, with a simultaneous decrease in the total CYP concentration suggest an unusual mode of regulation of CYP2A5 in response to cadmium exposure, amongst the CYP enzymes. The observed decrease in the mRNA but not in protein levels after maximal induction may suggest involvement of post-trancriptional mechanisms in the regulation. Upregulation of CYP2A5 by cadmium in the Nrf2 +/+ mice but not in the Nrf2 -/- mice indicates a role for this transcription factor in the regulation. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Effects of cigarette smoking and exposure to dietary cadmium (Cd) and lead (Pb) on urinary biomarkers of renal function and phenotypic variability of cytochrome P450 2A6 (CYP2A6) were investigated in a group of 96 healthy Thai men with mean age of 36.7 year (19-57 years). In non-smokers, Cd burden increased with age (r = 0.47, P < 0.001). In current smokers, Cd burden increased with both age (r = 0.45, P = 0.01) and number of cigarettes smoked per day (r = 0.32, P = 0.05). Cd-linked renal tubular dysfunction was seen in both smokers and non-smokers, but Pb-linked glomerular dysfunction was seen in smokers only, possibly due to more recent exposure to high levels of Cd and Pb, as reflected by 30-50% higher serum Cd and Pb levels in smokers than non-smokers (P < 0.05). Exposure to dietary Cd and Pb appeared to be associated with mild tubular dysfunction whereas dietary exposure plus cigarette smoking was associated with tubular plus glomerular dysfunction. Hepatic CYP2A6 activity in non-smokers showed a positive association with Cd burden (adjusted P = 0.38, P = 0.006), but it showed an inverse correlation with Pb (adjusted beta = -0.29, P = 0.003), suggesting opposing effects of Cd and Pb on hepatic CYP2A6 phenotype. In contrast, CYP2A6 activity in current smokers did not correlate with Cd or Pb, but it showed a positive correlation with serum ferritin levels (r = 0.45, P = 0.01). These finding suggest that Pb concentrations in the liver probably were too low to inhibit hepatic synthesis of heme and CYP2A6 and that the concurrent induction of hepatic CYP2A6 and ferritin was probably due to cigarette smoke constituents other than the Cd and Pb. (C) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
We examined the interrelationships between phenotype of hepatic cytochrome P450 2A6 (CYP2A6), nephropathy, and exposure to cadmium and lead in a group of 118 healthy Thai men and women who had never smoked. Their urinary Cd excretion ranged from 0.05 to 2.36 mug/g creatinine, whereas their urinary Pb excretion ranged from 0.1 to 12 mug/g creatinine. Average age and Cd burden of women and men did not differ. Women, however, on average showed a 46% higher urinary Pb excretion (p < 0.001) and lower zinc status, suggested by lower average serum Zn and urinary Zn excretion compared with those in men. Cd-linked nephropathy was detected in both men and women. However, Pb-linked nephropathy was seen only in women, possibly because of higher Pb burden coupled with lower protective factors, notably of Zn (P < 0.001), in women compared with men. In men, Pb burden showed a negative association with CYP2A6 activity (adjusted beta = -0.29, p = 0.003), whereas Cd burden showed a positive association with CYP2A6 activity (adjusted beta = 0.38, p = 0.001), suggesting opposing effects of Cd and Pb on hepatic CYP2A6 phenotype. The weaker correlation between Cd burden CYP2A6 activity in women despite similarity in Cd burden between men and women is consistent with opposing effects of Pb and Cd on hepatic CYP2A6 phenotypic expression. A positive correlation between Cd-linked nephropathy (urinary N-acetyl-beta-D-glucosaminidase excretion) and CYP2A6 activity in men (r = 0.39, p = 0.002) and women (r = 0.37, p = 0.001) suggests that Cd induction of hepatic CYP2A6 expression and Cd-linked nephropathy occurred simultaneously.
Resumo:
A model to investigate hepatic drug uptake and metabolism in the dog was developed for this study. Catheters were placed in the portal and hepatic veins during exploratory laparotomy to collect pre- and posthepatic blood samples at defined intervals. Drug concentrations in the portal vein were taken to reflect intestinal uptake and metabolism of an p.o. administered drug (propranolol), while differences in drug and metabolite concentrations between portal and hepatic veins reflected hepatic uptake and metabolism. A significant difference in propranolol concentration between hepatic and portal veins confirmed a high hepatic extraction of this therapeutic agent in the dog. This technically uncomplicated model may be used experimentally or clinically to determine hepatic function and metabolism of drugs that may be administered during anaesthesia and surgery.
Resumo:
HepG2 cells were stably transfected with human caveolin-1 (HepG2/cav cells). Transfection resulted in expression of caveolin-1 mRNA, a high abundance of caveolin-1 protein, and the formation of caveolae on the plasma membrane. Cholesterol efflux from HepG2/cav cells was 280 and 45% higher than that from parent HepG2 cells when human plasma and human apoA-I, respectively, were used as acceptors. The difference in efflux was eliminated by treatment of cells with progesterone. There was no difference in cholesterol efflux to cyclodextrin. Cholesterol efflux from plasma membrane vesicles was similar for the two cell types. Transfection led to a 40% increase in the amount of plasma membrane cholesterol in cholesterol-rich domains ( caveolae and/or rafts) and a 67% increase in the rate of cholesterol trafficking from intracellular compartments to these domains. Cholesterol biosynthesis in HepG2/cav cells was increased by 2-fold, and cholesterol esterification was reduced by 50% compared with parent HepG2 cells. The proliferation rate of transfected cells was significantly lower than that of non-transfected cells. Transfection did not affect expression of ABCA1 or the abundance of ABCA1 protein, but decreased secretion of apoA-I. We conclude that overexpression of caveolin-1 in hepatic cells stimulates cholesterol efflux by enhancing transfer of cholesterol to cholesterol-rich domains in the plasma membrane.
Resumo:
Modulation of the cytochrome P450 (CYP) monooxygenase system by cadmium was investigated in male, adult DBA/2J mice treated with a single dose (16 Amol/kg body weight, i.p.) of cadmium chloride (CdCl2) at various time points. The total CYP content of kidney microsomes started to decrease 4 hours earlier than in the liver (P < 0.05), with maximal decreases at 24 hours of 56% and 85% in the liver and kidney, respectively. In contrast, both hepatic and renal coumarin 7-hydroxylase (COH) activity (indicative of CYP2A5 activity) relative to total CYP content started to progressively increase at 8 hours, with renal activity 61 times higher than the hepatic activity. Maximum increases were observed, 15-fold in the liver and 64-fold in the kidney after 24 hours. Liver and kidney CYP2A5 mRNA levels increased maximally 12 and 4 hours after treatment, respectively and decreased to almost half 6 hours later. In contrast, kidney and liver CYP2A5 protein levels increased maximally at 18 and 24 hours. This study demonstrates that hepatic and renal CYP2A5 is upregulated by cadmium with a faster response in the kidney than in the liver. This observation is concordant with the fact that kidney is the target organ for cadmium toxicity. The observed increase in the mRNA but not in protein levels after maximal induction suggests involvement of post-transcriptional mechanisms in the regulation of CYP2A5 expression by cadmium.
Resumo:
The aim of this study was to define the determinants of the linear hepatic disposition kinetics of propranolol optical isomers using a perfused rat liver. Monensin was used to abolish the lysosomal proton gradient to allow an estimation of propranolol ion trapping by hepatic acidic vesicles. In vitro studies were used for independent estimates of microsomal binding and intrinsic clearance. Hepatic extraction and mean transit time were determined from outflow-concentration profiles using a nonparametric method. Kinetic parameters were derived from a physiologically based pharmacokinetic model. Modeling showed an approximate 34-fold decrease in ion trapping following monensin treatment. The observed model-derived ion trapping was similar to estimated theoretical values. No differences in ion-trapping values was found between R(+)- and S(-)- propranolol. Hepatic propranolol extraction was sensitive to changes in liver perfusate flow, permeability-surface area product, and intrinsic clearance. Ion trapping, microsomal and nonspecific binding, and distribution of unbound propranolol accounted for 47.4, 47.1, and 5.5% of the sequestration of propranolol in the liver, respectively. It is concluded that the physiologically more active S(-)- propranolol differs from the R(+)- isomer in higher permeability-surface area product, intrinsic clearance, and intracellular binding site values.
Resumo:
1 The disposition kinetics of [H-3] taurocholate ([H-3]TC) in perfused normal and cholestatic rat livers were studied using the multiple indicator dilution technique and several physiologically based pharmacokinetic models. 2 The serum biochemistry levels, the outflow profiles and biliary recovery of [H-3] TC were measured in three experimental groups: (i) control; (ii) 17α-ethynylestradiol (EE)-treated (low dose); and (iii) EE-treated (high dose) rats. EE treatment caused cholestasis in a dose-dependent manner. 3 A hepatobiliary TC transport model, which recognizes capillary mixing, active cellular uptake, and active efflux into bile and plasma described the disposition of [H-3]TC in the normal and cholestatic livers better than the other pharmacokinetic models. 4 An estimated five- and 18-fold decrease in biliary elimination rate constant, 1.7- and 2.7-fold increase in hepatocyte to plasma efflux rate constant, and 1.8- and 2.8-fold decrease in [H-3]TC biliary recovery ratio was found in moderate and severe cholestasis, respectively, relative to normal. 5 There were good correlations between the predicted and observed pharmacokinetic parameters of [H-3]TC based on liver pathophysiology (e.g. serum bilirubin level and biliary excretion of [H-3]TC). In conclusion, these results show that altered hepatic TC pharmacokinetics in cholestatic rat livers can be correlated with the relevant changes in liver pathophysiology in cholestasis.