135 resultados para heart muscle conduction system
Resumo:
1. We have investigated the cardiovascular pharmacology of the crude venom extract (CVE) from the potentially lethal, very small carybdeid jellyfish Carukia barnesi, in rat, guinea-pig and human isolated tissues and anaesthetized piglets. 2. In rat and guinea-pig isolated right atria, CVE (0.1-10 mu g/mL) caused tachycardia in the presence of atropine (I mu mol/L), a response almost completely abolished by pretreatment with tetrodotoxin (TTX; 0.1 mu mol/L). In paced left atria from guinea-pig or rat, CVE (0.1-3 mu g/mL) caused a positive inotropic response in the presence of atropine (1 mu mol/L). 3. In rat mesenteric small arteries, CVE (0.1-30 mu g/mL) caused concentration-dependent contractions that were unaffected by 0.1 mu mol/L TTX, 0.3 mu mol/L prazosin or 0.1 mu mol/L co-conotoxin GVIA. 4. Neither the rat right atria tachycardic response nor the contraction of rat mesenteric arteries to CVE were affected by the presence of box jellyfish (Chironex fleckeri) antivenom (92.6 units/mL). 5. In human isolated driven right atrial trabeculae muscle strips, CVE (10 mu g/mL) tended to cause an initial fall, followed by a more sustained increase, in contractile force. In the presence of atropine (I mu mol/L), CVE only caused a positive inotropic response. In separate experiments in the, presence of propranolol (0.2 mu mol/L), the negative inotropic effect of CVE was enhanced, whereas the positive inotropic response was markedly decreased. 6. In anaesthetized piglets, CVE (67 mu g/kg, i.v.) caused sustained tachycardia and systemic and pulmonary hypertension. Venous blood samples demonstrated a marked elevation in circulating levels of noradrenaline and adrenaline. 7. We conclude that C. barnesi venom may contain a neural sodium channel activator (blocked by TTX) that, in isolated atrial tissue (and in vivo), causes the release of transmitter (and circulating) catecholamines. The venom may also contain a 'direct' vasoconstrictor component. These observations explain, at least in part, the clinical features of the potentially deadly Irukandji syndrome.
Resumo:
Frog jumping is an excellent model system for examining the structural basis of interindividual variation in burst locomotor performance. Some possible factors that affect jump performance, such as total body size, hindlimb length, muscle mass, and muscle mechanical and biochemical properties, were analysed at the interindividual (intraspecies) level in the tree frog Hyla multilineata. The aim of this study was to determine which of these physiological and anatomical variables both vary between individuals and are correlated with interindividual variation in jump performance. The model produced via stepwise linear regression analysis of absolute data suggested that 62% of the interindividual variation in maximum jump distance could be explained by a combination of interindividual variation in absolute plantaris muscle mass, total hindlimb muscle mass ( excluding plantaris muscle), and pyruvate kinase activity. When body length effects were removed, multiple regression indicated that the same independent variables explained 43% of the residual interindividual variation in jump distance. This suggests that individuals with relatively large jumping muscles and high pyruvate kinase activity for their body size achieved comparatively large maximal jump distances for their body size.
Resumo:
Study objectives: Respiratory muscle weakness and decreased endurance have been demonstrated following mechanical ventilation. However, its relationship to the duration of mechanical ventilation is not known. The aim of this study was to assess respiratory muscle endurance and its relationship to the duration of mechanical ventilation. Design: Prospective study. Setting: Tertiary teaching hospital ICU. Patients: Twenty subjects were recruited for the study who had received mechanical ventilation for a 48 h and had been discharged from the ICU. Measurements: FEV1 FVC, and maximal inspiratory pressure (Pimax) at functional residual capacity were recorded. The Pimax attained following resisted inspiration at 30% of the initial Pimax for 2 min was recorded, and the fatigue resistance index (FRI) [Pimax final/Pimax initial] was calculated. The duration of ICU length of stay (ICULOS), duration of mechanical ventilation (MVD), duration of weaning (WD), and Charlson comorbidities score (CCS) were also recorded. Relationships between fatigue and other parameters were analyzed using the Spearman correlations (p). Results: Subjects were admitted to the ICU for a mean duration of 7.7 days (SD, 3.7 days) and required mechanical ventilation for a mean duration of 4.6 days (SD, 2.5 days). The mean FRI was 0.88 (SD, 0.13), indicating a 12% fall in Pimax, and was negatively correlated with MVD (r = -0.65; p = 0.007). No correlations were found between the FRI and FEV1, FVC, ICULOS, WD, or CCS. Conclusions: Patients who had received mechanical ventilation for > 48 h have reduced inspiratory muscle endurance that worsens with the duration of mechanical ventilation and is present following successful weaning. These data suggest that patients needing prolonged mechanical ventilation are at risk of respiratory muscle fatigue and may benefit from respiratory muscle training.
Resumo:
beta-Adrenoceptor antagonists have revolutionized the management of heart failure in humans. However, fundamental questions remain concerning their use. Currently, there is considerable debate about the role of beta(2)-adrenoceptors in heart failure and whether incremental clinical benefit can be obtained by blockade of beta(2)-adrenoceptors in addition to beta(1)-adrenoceptors. Polymorphic forms of beta(1)- and beta(2)-adrenoceptors exist, which might contribute to the variable clinical outcomes that are observed with P-adrenoceptor antagonists. There is evidence for a low-affinity state of beta(1)-adrenoceptors and ventricular beta(3)-adrenoceptors, and these are discussed in the context of heart failure. Finally, there is seemingly paradoxical evidence that restoration and normalization of the beta-adrenoceptor system is beneficial in animal models of heart failure. We reconcile this view with the current clinical use and proven benefit of beta-adrenoceptor antagonists.
Resumo:
Skeletal muscle is a major mass peripheral tissue that accounts for similar to 40% of total body weight and 50% of energy expenditure and is a primary site of glucose disposal and fatty acid oxidation. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. Excessive caloric intake is sensed by the brain and induces beta-adrenergic receptor (beta-AR)- mediated adaptive thermogenesis. beta-AR null mice develop severe obesity on a high fat diet. However, the target gene(s), target tissues(s), and molecular mechanism involved remain obscure. We observed that 30 - 60 min of beta-AR agonist ( isoprenaline) treatment of C2C12 skeletal muscle cells strikingly activated (> 100-fold) the expression of the mRNA encoding the nuclear hormone receptor, Nur77. In contrast, the expression of other nuclear receptors that regulate lipid and carbohydrate metabolism was not induced. Stable transfection of Nur77-specific small interfering RNAs (siNur77) into skeletal muscle cells repressed endogenous Nur77 mRNA expression. Moreover, we observed attenuation of gene and protein expression associated with the regulation of energy expenditure and lipid homeostasis, for example AMP-activated protein kinase gamma 3, UCP3, CD36,adiponectin receptor 2, GLUT4, and caveolin-3. Attenuation of Nur77 expression resulted in decreased lipolysis. Finally, in concordance with the cell culture model, injection and electrotransfer of siNur77 into mouse tibialis cranialis muscle resulted in the repression of UCP3 mRNA expression. This study demonstrates regulatory cross-talk between the nuclear hormone receptor and beta-AR signaling pathways. Moreover, it suggests Nur77 modulates the expression of genes that are key regulators of skeletal muscle lipid and energy homeostasis. In conclusion, we speculate that Nur77 agonists would stimulate lipolysis and increase energy expenditure in skeletal muscle and suggest selective activators of Nur77 may have therapeutic utility in the treatment of obesity.
Resumo:
Background-Elevated serum inflammatory marker levels are associated with a greater long-term risk of cardiovascular events. Because 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitors (statins) may have an antiinflammatory action, it has been suggested that patients with elevated inflammatory marker levels may have a greater reduction in cardiovascular risk with statin treatment. Methods and Results-We evaluated the association between the white blood cell count (WBC) and coronary heart disease mortality during a mean follow-up of 6.0 years in the Long-Term Intervention With Pravastatin in Ischemic Disease (LIPID) Study, a clinical trial comparing pravastatin (40 mg/d) with a placebo in 9014 stable patients with previous myocardial infarction or unstable angina. An increase in baseline WBC was associated with greater coronary heart disease mortality in patients randomized to placebo (hazard ratio for 1 X 10(9)/L increase in WBC, 1.18; 95% CI, 1.12 to 1.25; P<0.001) but not pravastatin (hazard ratio, 1.02; 95% CI, 0.96 to 1.09; P=0.56; P for interaction=0.004). The numbers of coronary heart disease deaths prevented per 1000 patients treated with pravastatin were 0, 9, 30, and 38 for baseline WBC quartiles of <5.9, 6.0 to 6.9, 7.0 to 8.1, and >8.2X10(9)/L, respectively. WBC was a stronger predictor of this treatment benefit than the ratio of total to high-density lipoprotein cholesterol and a global measure of cardiac risk. There was also a greater reduction (P=0.052) in the combined incidence of cardiovascular mortality, nonfatal myocardial infarction, and stroke with pravastatin as baseline WBC increased ( by quartile: 3, 41, 61, and 60 events prevented per 1000 patients treated, respectively). Conclusions-These data support the hypothesis that individuals with evidence of inflammation may obtain a greater benefit from statin therapy.
Resumo:
Rev-erbbeta is an orphan nuclear receptor that selectively blocks trans-activation mediated by the retinoic acid-related orphan receptor-alpha (RORalpha). RORalpha has been implicated in the regulation of high density lipoprotein cholesterol, lipid homeostasis, and inflammation. Rev-erbbeta and RORalpha are expressed in similar tissues, including skeletal muscle; however, the pathophysiological function of Rev-erbbeta has remained obscure. We hypothesize from the similar expression patterns, target genes, and overlapping cognate sequences of these nuclear receptors that Rev-erbbeta regulates lipid metabolism in skeletal muscle. This lean tissue accounts for > 30% of total body weight and 50% of energy expenditure. Moreover, this metabolically demanding tissue is a primary site of glucose disposal, fatty acid oxidation, and cholesterol efflux. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. We utilize ectopic expression in skeletal muscle cells to understand the regulatory role of Rev-erbbeta in this major mass peripheral tissue. Exogenous expression of a dominant negative version of mouse Rev-erbbeta decreases the expression of many genes involved in fatty acid/lipid absorption (including Cd36, and Fabp-3 and -4). Interestingly, we observed a robust induction (> 15-fold) in mRNA expression of interleukin-6, an exercise-induced myokine that regulates energy expenditure and inflammation. Furthermore, we observed the dramatic repression (> 20- fold) of myostatin mRNA, another myokine that is a negative regulator of muscle hypertrophy and hyperplasia that impacts on body fat accumulation. This study implicates Rev-erbbeta in the control of lipid and energy homoeostasis in skeletal muscle. In conclusion, we speculate that selective modulators of Rev-erbbeta may have therapeutic utility in the treatment of dyslipidemia and regulation of muscle growth.
Resumo:
GABAergic and glycinergic synaptic transmission is proposed to promote the maturation and refinement of the developing CNS. Here we provide morphological and functional evidence that glycinergic and GABAergic synapses control motoneuron development in a region-specific manner during programmed cell death. In gephyrin-deficient mice that lack all postsynaptic glycine receptor and some GABA(A) receptor clusters, there was increased spontaneous respiratory motor activity, reduced respiratory motoneuron survival, and decreased innervation of the diaphragm. In contrast, limb-innervating motoneurons showed decreased spontaneous activity, increased survival, and increased innervation of their target muscles. Both GABA and glycine increased limb-innervating motoneuron activity and decreased respiratory motoneuron activity in wild-type mice, but only glycine responses were abolished in gephyrin-deficient mice. Our results provide genetic evidence that the development of glycinergic and GABAergic synaptic inputs onto motoneurons plays an important role in the survival, axonal branching, and spontaneous activity of motoneurons in developing mammalian embryos.
Resumo:
This study's aim was to identify the effect of oscillation of torques in isometric tasks under identical mechanical conditions on the muscle synergies used. It was hypothesized that bi-functional muscles would play a lesser role in torque oscillation, because they would also generate an undesired oscillation. Thus, changes in muscle synergies were expected as a consequence of oscillation in torque generation. The effect of the trajectory of torque generation was investigated in dual-degrees-of-freedom submaximal isometric oscillation torque tasks at the elbow. The torques were flexion-extension and supination-pronation. Oscillation torques were compared with static torque generations at four torque positions during oscillation. Muscle activity was determined with surface electromyography. Compared with the static torque tasks, the oscillation tasks showed an overall increased muscle activity. The oscillation tasks, however, showed similar activity patterns and muscle synergies compared to the static composite tasks. It was found that the motor system is well able to control different orthogonal combinations of slow torque oscillations and constant torques by employing a single oscillating muscle synergy.
Resumo:
Background Although both strength training (ST) and endurance training (ET) seem to be beneficial in type 2 diabetes mellitus (T2D), little is known about post-exercise glucose profiles. The objective of the study was to report changes in blood glucose (BG) values after a 4-month ET and ST programme now that a device for continuous glucose monitoring has become available. Materials and methods Fifteen participants, comprising four men age 56.5 +/- 0.9 years and 11 women age 57.4 +/- 0.9 years with T2D, were monitored with the MiniMed (Northridge, CA, USA) continuous glucose monitoring system (CGMS) for 48 h before and after 4 months of ET or ST. The ST consisted of three sets at the beginning, increasing to six sets per week at the end of the training period, including all major muscle groups and ET performed with an intensity of maximal oxygen uptake of 60% and a volume beginning at 15 min and advancing to a maximum of 30 min three times a week. Results A total of 17 549 single BG measurements pretraining (619.7 +/- 39.8) and post-training (550.3 +/- 30.1) were recorded, correlating to an average of 585 +/- 25.3 potential measurements per participant at the beginning and at the end of the study. The change in BG-value between the beginning (132 mg dL(-1)) and the end (118 mg dL(-1)) for all participants was significant (P = 0.028). The improvement in BG-value for the ST programme was significant (P = 0.02) but for the ET no significant change was measured (P = 0.48). Glycaemic control improved in the ST group and the mean BG was reduced by 15.6% (Cl 3-25%). Conclusion In conclusion, the CGMS may be a useful tool in monitoring improvements in glycaemic control after different exercise programmes. Additionally, the CGMS may help to identify asymptomatic hypoglycaemia or hyperglycaemia after training programmes.
Resumo:
Neurodynamic tests such as the straight leg raising (SLR) and slump test are frequently used for assessment of mechanosensitivity of neural tissues. However, there is ongoing debate in the literature regarding the contributions of neural and non-neural tissues to the elicited symptoms because many structures are affected by these tests. Sensitizing manoeuvres are limb or spinal movements added to neurodynamic tests, which aim to identify the origin of the symptoms by preferentially loading or unloading neural structures. A prerequisite for the use of sensitizing manoeuvres to identify neural involvement is that the addition of sensitizing manoeuvres has no impact on pain perception when the origin of the pain is non-neural. In this study, experimental muscle pain was induced by injection of hypertonic saline in tibialis anterior or soleus in 25 asymptomatic, naive volunteers. A first experiment investigated the impact of hip adduction, abduction, medial and lateral rotation in the SLR position. In a second experiment, the different stages of the slump test were examined. The intensity and area of experimentally induced muscle pain did not increase when sensitizing manoeuvres were added to the SLR or throughout the successive stages of the slump test. The findings of this study lend support to the validity of the use of sensitizing manoeuvres during neurodynamic testing. (C) 2004 Elsevier Ltd. All rights reserved.