131 resultados para finite integral transform technique


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of the support phase and catalyst preparation methods on catalytic activity and carbon deposition were systematically investigated over nickel catalysts supported on Al2O3, SiO2 and MgO for the reforming reaction of methane with carbon dioxide. It is found that the pore structure of the support and metal-support interaction significantly affected the catalytic activity and coking resistance. Catalyst with well-developed porosity exhibited higher catalytic activity. Strong interaction between metal and the support made the catalyst more resistant to sintering and coking, thus resulting in a longer time of catalyst stability. (C) 1998 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this research is to determine the effects of constraining the horizontal distance of the feet from the load on the posture adopted at the start of the lift. Kinematic data were collected while each of 24 subjects lifted 3, 6, and 9 kg loads from a starting height 18 cm above the ground. The position of the feet was controlled relative to the load such that the horizontal distance from the hand to the ankle at the start of extension was either 20, 40, or 60 cm. Subjects performed 20 trials in each of six combinations of load and ankle-load distance chosen to provide three sets of equivilent load moment pairs. The initial horizontal distance from the load to the ankle had a large influence on the posture adopted to lift the load. Ankle and knee flexion, in particular, were reduced when the ankle-load distance was smaller, and particularly so when the distance was reduced to 20 cm. Hip flexion was reduced to a smaller extent, while lumbar vertebral flexion remained relatively unchanged. The inclination of the trunk at the start of the lift was unchanged when the ankle-load distance was 60 or 40 cm, but was 10 degrees greater when the load was 20 cm from the ankles, indicating that subjects adopted a posture closer to a stoop when the ankle-load distance was small. Comparison of conditions of equal load moment (but different load mass and ankle-load distance) revealed differences which mirrored the effects of ankle-load distance alone, suggesting that the effects of ankle-load distance on the posture adopted at the start of extension were largely independent of the load moment. While the forces and torques required to lift a load must be to some extent dependent on the load moment, rather than load or ankle-load distance per se, the posture adopted to lift the load is not.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum integrability is established for the one-dimensional supersymmetric U model with boundary terms by means of the quantum inverse-scattering method. The boundary supersymmetric U chain is solved by using the coordinate-space Bethe-ansatz technique and Bethe-ansatz equations are derived. This provides us with a basis for computing the finite-size corrections to the low-lying energies in the system. [S0163-1829(98)00425-1].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The moving finite element collocation method proposed by Kill et al. (1995) Chem. Engng Sci. 51 (4), 2793-2799 for solution of problems with steep gradients is further developed to solve transient problems arising in the field of adsorption. The technique is applied to a model of adsorption in solids with bidisperse pore structures. Numerical solutions were found to match the analytical solution when it exists (i.e. when the adsorption isotherm is linear). The method is simple yet sufficiently accurate for use in adsorption problems, where global collocation methods fail. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A generalization of the classical problem of optimal lattice covering of R-n is considered. Solutions to this generalized problem are found in two specific classes of lattices. The global optimal solution of the generalization is found for R-2. (C) 1998 Elsevier Science Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A finite element model (FEM) of the cell-compression experiment has been developed in dimensionless form to extract the fundamental cell-wall-material properties (i.e. the constitutive equation and its parameters) from experiment force-displacement data. The FEM simulates the compression of a thin-walled, liquid-filled sphere between two flat surfaces. The cell-wall was taken to be permeable and the FEM therefore accounts for volume loss during compression. Previous models assume an impermeable wall and hence a conserved cell volume during compression. A parametric study was conducted for structural parameters representative of yeast. It was shown that the common approach of assuming reasonable values for unmeasured parameters (e.g. cell-wall thickness, initial radial stretch) can give rise to nonunique solutions for both the form and constants in the cell-wall constitutive relationship. Similarly, measurement errors can also lead to an incorrectly defined cell-wall constitutive relationship. Unique determination of the fundamental wall properties by cell compression requires accurate and precise measurement of a minimum set of parameters (initial cell radius, initial cell-wall thickness, and the volume loss during compression). In the absence of such measurements the derived constitutive relationship may be in considerable error, and should be evaluated against its ability to predict the outcome of other mechanical experiments. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present finite element simulations of temperature gradient driven rock alteration and mineralization in fluid saturated porous rock masses. In particular, we explore the significance of production/annihilation terms in the mass balance equations and the dependence of the spatial patterns of rock alteration upon the ratio of the roll over time of large scale convection cells to the relaxation time of the chemical reactions. Special concepts such as the gradient reaction criterion or rock alteration index (RAI) are discussed in light of the present, more general theory. In order to validate the finite element simulation, we derive an analytical solution for the rock alteration index of a benchmark problem on a two-dimensional rectangular domain. Since the geometry and boundary conditions of the benchmark problem can be easily and exactly modelled, the analytical solution is also useful for validating other numerical methods, such as the finite difference method and the boundary element method, when they are used to dear with this kind of problem. Finally, the potential of the theory is illustrated by means of finite element studies related to coupled flow problems in materially homogeneous and inhomogeneous porous rock masses. (C) 1998 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The truncation errors associated with finite difference solutions of the advection-dispersion equation with first-order reaction are formulated from a Taylor analysis. The error expressions are based on a general form of the corresponding difference equation and a temporally and spatially weighted parametric approach is used for differentiating among the various finite difference schemes. The numerical truncation errors are defined using Peclet and Courant numbers and a new Sink/Source dimensionless number. It is shown that all of the finite difference schemes suffer from truncation errors. Tn particular it is shown that the Crank-Nicolson approximation scheme does not have second order accuracy for this case. The effects of these truncation errors on the solution of an advection-dispersion equation with a first order reaction term are demonstrated by comparison with an analytical solution. The results show that these errors are not negligible and that correcting the finite difference scheme for them results in a more accurate solution. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peanut, one of the world's most important oilseed crops, has a narrow germplasm base and lacks sources of resistance to several major diseases. The species is considered recalcitrant to transformation, with few confirmed transgenic plants upon particle bombardment or Agrobacterium treatment. Reported transformation methods are limited by low efficiency, cultivar specificity, chimeric or infertile transformants, or availability of explants. Here we present a method to efficiently transform cultivars in both botanical types of peanut, by (1) particle bombardment into embryogenic callus derived from mature seeds, (2) escape-free (not stepwise) selection for hygromycin B resistance, (3) brief osmotic desiccation followed by sequential incubation on charcoal and cytokinin-containing media; resulting in efficient conversion of transformed somatic embryos into fertile, non-chimeric, transgenic plants. The method produces three to six independent transformants per bombardment of 10 cm(2) embryogenic callus. Potted, transgenic plant lines can be regenerated within 9 months of callus initiation, or 6 months after bombardment. Transgene copy number ranged from one to 20 with multiple integration sites. There was ca. 50% coexpression of hph and luc or uidA genes coprecipitated on separate plasmids. Reporter gene (luc) expression was confirmed in T-1 progeny from each of six tested independent transformants. Insufficient seeds were produced under containment conditions to determine segregation ratios. The practicality of the technique for efficient cotransformation with selected and unselected genes is demonstrated using major commercial peanut varieties in Australia (cv. NC-7, a virginia market type) and Indonesia (cv. Gajah, a spanish market type).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a numerical methodology for the study of convective pore-fluid, thermal and mass flow in fluid-saturated porous rock basins. lit particular, we investigate the occurrence and distribution pattern of temperature gradient driven convective pore-fluid flow and hydrocarbon transport in the Australian North West Shelf basin. The related numerical results have demonstrated that: (1) The finite element method combined with the progressive asymptotic approach procedure is a useful tool for dealing with temperature gradient driven pore-fluid flow and mass transport in fluid-saturated hydrothermal basins; (2) Convective pore-fluid flow generally becomes focused in more permeable layers, especially when the layers are thick enough to accommodate the appropriate convective cells; (3) Large dislocation of strata has a significant influence off the distribution patterns of convective pore;fluid flow, thermal flow and hydrocarbon transport in the North West Shelf basin; (4) As a direct consequence of the formation of convective pore-fluid cells, the hydrocarbon concentration is highly localized in the range bounded by two major faults in the basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use theoretical and numerical methods to investigate the general pore-fluid flow patterns near geological lenses in hydrodynamic and hydrothermal systems respectively. Analytical solutions have been rigorously derived for the pore-fluid velocity, stream function and excess pore-fluid pressure near a circular lens in a hydrodynamic system. These analytical solutions provide not only a better understanding of the physics behind the problem, but also a valuable benchmark solution for validating any numerical method. Since a geological lens is surrounded by a medium of large extent in nature and the finite element method is efficient at modelling only media of finite size, the determination of the size of the computational domain of a finite element model, which is often overlooked by numerical analysts, is very important in order to ensure both the efficiency of the method and the accuracy of the numerical solution obtained. To highlight this issue, we use the derived analytical solutions to deduce a rigorous mathematical formula for designing the computational domain size of a finite element model. The proposed mathematical formula has indicated that, no matter how fine the mesh or how high the order of elements, the desired accuracy of a finite element solution for pore-fluid flow near a geological lens cannot be achieved unless the size of the finite element model is determined appropriately. Once the finite element computational model has been appropriately designed and validated in a hydrodynamic system, it is used to examine general pore-fluid flow patterns near geological lenses in hydrothermal systems. Some interesting conclusions on the behaviour of geological lenses in hydrodynamic and hydrothermal systems have been reached through the analytical and numerical analyses carried out in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use the finite element method to solve reactive mass transport problems in fluid-saturated porous media. In particular, we discuss the mathematical expression of the chemical reaction terms involved in the mass transport equations for an isothermal, non-equilibrium chemical reaction. It has turned out that the Arrhenius law in chemistry is a good mathematical expression for such non-equilibrium chemical reactions especially from the computational point of view. Using the finite element method and the Arrhenius law, we investigate the distributions of PH (i.e. the concentration of H+) and the relevant reactive species in a groundwater system. Although the main focus of this study is on the contaminant transport problems in groundwater systems, the related numerical techniques and principles are equally applicable to the orebody formation problems in the geosciences. Copyright (C) 1999 John Wiley & Sons, Ltd.