71 resultados para evidence-in-chief
Resumo:
Adsorption of supercritical fluids is increasingly carried out to determine the micropore size distribution. This is largely motivated by the advances in the use of supercritical adsorption in high energy applications, such as hydrogen and methane storage in porous media. Experimental data are reported as mass excess versus pressure, and when these data are matched against the theoretical mass excess, significant errors could occur if the void volume used in the calculation of the experimental mass excess is incorrectly determined [Malbrunot, P.; Vidal, D.; Vermesse, J.; Chahine, R.; Bose, T. K. Langmuir 1997, 13, 539]. 1 The incorrect value for the void volume leads to a wrong description of the maximum in the plot of mass excess versus pressure as well as the part of the isotherm over the pressure region where the isotherm is decreasing. Because of this uncertainty in the maximum and the decreasing part of the isotherm, we propose a new method in which the problems associated with this are completely avoided. Our method involves only the relationship between the amount that is introduced into the adsorption cell and the equilibrium pressure. This information of direct experimental data has two distinct advantages. The first is that the data is the raw data without any manipulation (i.e., involving further calculations), and the second one is that this relationship always monotonically increases with pressure. We will illustrate this new method with the adsorption data of methane in a commercial sample of activated carbon.
Resumo:
Equilibrium adsorption data of nitrogen on a series of nongraphitized carbon blacks and nonporous silica at 77 K were analyzed by means of classical density functional theory to determine the solid-fluid potential. The behavior of this potential profile at large distance is particularly considered. The analysis of nitrogen adsorption isotherms seems to indicate that the adsorption in the first molecular layer is localized and controlled mainly by short-range forces due to the surface roughness, crystalline defects, and functional groups. At distances larger than approximately 1.3-1.5 molecular diameters, the adsorption is nonlocalized and appears as a thickening of the adsorbed film with increasing bulk pressure in a relatively weak adsorption potential field. It has been found that the asymptotic decay of the potential obeys the power law with the exponent being -3 for carbon blacks and -4 for silica surface, which signifies that in the latter case the adsorption potential is mainly exerted by surface oxygen atoms. In all cases, the absolute value of the solid-fluid potential is much smaller than that predicted by the Lennard-Jones pair potential with commonly used solid-fluid molecular parameters. The effect of surface heterogeneity on the heat of adsorption is also discussed.
Resumo:
The performance of intermolecular potential models on the adsorption of carbon tetrachloride on graphitized thermal carbon black at various temperatures is investigated. This is made possible with the extensive experimental data of Machin and Ross(1), Avgul et al.,(2) and Pierce(3) that cover a wide range of temperatures. The description of all experimental data is only possible with the allowance for the surface mediation. If this were ignored, the grand canonical Monte Carlo (GCMC) simulation results would predict a two-dimensional (2D) transition even at high temperatures, while experimental data shows gradual change in adsorption density with pressure. In general, we find that the intermolecular interaction has to be reduced by 4% whenever particles are within the first layer close to the surface. We also find that this degree of surface mediation is independent of temperature. To understand the packing of carbon tetrachloride in slit pores, we compared the performance of the potential models that model carbon tetrachloride as either five interaction sites or one site. It was found that the five-site model performs better and describes the imperfect packing in small pores better. This is so because most of the strength of fluid-fluid interaction between two carbon tetrachloride molecules comes from the interactions among chlorine atoms. Methane, although having tetrahedral shape as carbon tetrachloride, can be effectively modeled as a pseudospherical particle because most of the interactions come from carbon-carbon interaction and hydrogen negligibly contributes to this.
Resumo:
A Monte Carlo simulation method is Used 10 study the effects of adsorption strength and topology of sites on adsorption of simple Lennard-Jones fluids in a carbon slit pore of finite length. Argon is used as a model adsorbate, while the adsorbent is modeled as a finite carbon slit pore whose two walls composed of three graphene layers with carbon atoms arranged in a hexagonal pattern. Impurities having well depth of interaction greater than that of carbon atom are assumed to be grafted onto the surface. Different topologies of the impurities; corner, centre, shelf and random topologies are studied. Adsorption isotherms of argon at 87.3 K are obtained for pore having widths of 1, 1.5 and 3 11111 using a Grand Canonical Monte Carlo simulation (GCMC). These results are compared with isotherms obtained for infinite pores. It is shown that the Surface heterogeneity affects significantly the overall adsorption isotherm, particularly the phase transition. Basically it shifts the onset of adsorption to lower pressure and the adsorption isotherms for these four impurity models are generally greater than that for finite pore. The positions of impurities on solid Surface also affect the shape of the adsorption isotherm and the phase transition. We have found that the impurities allocated at the centre of pore walls provide the greatest isotherm at low pressures. However when the pressure increases the impurities allocated along the edges of the graphene layers show the most significant effect on the adsorption isotherm. We have investigated the effect of surface heterogeneity on adsorption hysteresis loops of three models of impurity topology, it shows that the adsorption branches of these isotherms are different, while the desorption branches are quite close to each other. This suggests that the desorption branch is either the thermodynamic equilibrium branch or closer to it than the adsorption branch. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The performance of intermolecular potential models on the adsorption of benzene on graphitized thermal carbon black at various temperatures is investigated. Two models contain only dispersive sites, whereas the other two models account explicitly for the dispersive and electrostatic sites. Using numerous data in the literature on benzene adsorption on graphitized thermal carbon black at various temperatures, we have found that the effect of surface mediation on interaction between adsorbed benzene molecules must be accounted for to describe correctly the adsorption isotherm as well as the isosteric heat. Among the two models with partial charges tested, the WSKS model of Wick et at. I that has only six dispersive sites and three discrete partial charges is better than the very expensive all-atom model of Jorgensen and Severance.(2) Adsorbed benzene molecules on graphitized thermal carbon black have a complex orientation with respect to distance from the surface and also with respect to loading. At low loadings, they adopt the parallel configuration relative to the graphene surface, whereas at higher loadings (still less than monolayer coverage) some molecules adopt a slant orientation to maximize the fluid-fluid interaction. For loadings in the multilayer region, the orientation of molecules in the first layer is influenced by the presence of molecules in the second layer. The data that are used in this article come from the work of Isirikyan and Kiselev,(3) Pierotti and Smallwood,(4) Pierce and Ewing,(5) Belyakova, Kiselev, and Kovaleva,(6) and Carrott et al.(7)
Resumo:
We report a simple but efficient method to prepare stable homogeneous suspensions containing monodispersed MgAl layered double hydroxide (LDH) nanoparticles that have wide promising applications in cellular drug ( gene) delivery, polymer/LDH nanocomposites, and LDH thin films for catalysis, gas separation, sensing, and electrochemical materials. This new method involves a fast coprecipitation followed by controlled hydrothermal treatment under different conditions and produces stable homogeneous LDH suspensions under variable hydrothermal treatment conditions. Moreover, the relationship between the LDH particle size and the hydrothermal treatment conditions ( time, temperature, and concentration) has been systematically investigated, which indicates that the LDH particle size can be precisely controlled between 40 and 300 nm by adjusting these conditions. The reproducibility of making the identical suspensions under identical conditions has been confirmed with a number of experiments. The dispersion of agglomerated LDH aggregates into individual LDH crystallites during the hydrothermal treatment has been further discussed. This method has also been successfully applied to preparing stable homogeneous LDH suspensions containing various other metal ions such as Ni2+, Fe2+, Fe3+, Co2+, Cd2+, and Gd3+ in the hydroxide layers and many inorganic anions such as Cl-, CO32-, NO3-, and SO42-.
Resumo:
Ordered nanoporous carbon (ONC) was comprehensively tested for the first time as electrode material in lithium-ion battery. Structure characterization shows the order nanoporous structure and tiny crystallite structure of as-synthesized ONC. The electrochemical properties of this carbon were studied by galvanostatic cycling and cyclic voltammetry. Of special interest is that ONC gave no peak on its positive sweep of the cyclic voltammetry, which was different from other known anode materials. Besides, X-ray photoelectron spectroscopy (XPS) and XRD were also used to investigate the electrochemical characteristics of ONC. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A computer model was developed to simulate the cake formation and growth in cake filtration at an individual particle level. The model was shown to be able to generate structural information and quantify the cake thickness, average cake solidosity, filtrate volume, filtrate flowrate for constant pressure filtration or pressure drop across the filter unit for constant rate filtration as a function of filtration time. The effects of particle size distribution and key operational variables such as initial filtration flowrate, maximum pressure drop and initial solidosity were examined based on the simulated results. They are qualitatively comparable to those observed in physical experiments. The need for further development in simulation was also discussed. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a review of modelling and control of biological nutrient removal (BNR)-activated sludge processes for wastewater treatment using distributed parameter models described by partial differential equations (PDE). Numerical methods for solution to the BNR-activated sludge process dynamics are reviewed and these include method of lines, global orthogonal collocation and orthogonal collocation on finite elements. Fundamental techniques and conceptual advances of the distributed parameter approach to the dynamics and control of activated sludge processes are briefly described. A critical analysis on the advantages of the distributed parameter approach over the conventional modelling strategy in this paper shows that the activated sludge process is more adequately described by the former and the method is recommended for application to the wastewater industry (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A calibration methodology based on an efficient and stable mathematical regularization scheme is described. This scheme is a variant of so-called Tikhonov regularization in which the parameter estimation process is formulated as a constrained minimization problem. Use of the methodology eliminates the need for a modeler to formulate a parsimonious inverse problem in which a handful of parameters are designated for estimation prior to initiating the calibration process. Instead, the level of parameter parsimony required to achieve a stable solution to the inverse problem is determined by the inversion algorithm itself. Where parameters, or combinations of parameters, cannot be uniquely estimated, they are provided with values, or assigned relationships with other parameters, that are decreed to be realistic by the modeler. Conversely, where the information content of a calibration dataset is sufficient to allow estimates to be made of the values of many parameters, the making of such estimates is not precluded by preemptive parsimonizing ahead of the calibration process. White Tikhonov schemes are very attractive and hence widely used, problems with numerical stability can sometimes arise because the strength with which regularization constraints are applied throughout the regularized inversion process cannot be guaranteed to exactly complement inadequacies in the information content of a given calibration dataset. A new technique overcomes this problem by allowing relative regularization weights to be estimated as parameters through the calibration process itself. The technique is applied to the simultaneous calibration of five subwatershed models, and it is demonstrated that the new scheme results in a more efficient inversion, and better enforcement of regularization constraints than traditional Tikhonov regularization methodologies. Moreover, it is argued that a joint calibration exercise of this type results in a more meaningful set of parameters than can be achieved by individual subwatershed model calibration. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Hysteresis models that eliminate the artificial pumping errors associated with the Kool-Parker (KP) soil moisture hysteresis model, such as the Parker-Lenhard (PL) method, can be computationally demanding in unsaturated transport models since they need to retain the wetting-drying history of the system. The pumping errors in these models need to be eliminated for correct simulation of cyclical systems (e.g. transport above a tidally forced watertable, infiltration and redistribution under periodic irrigation) if the soils exhibit significant hysteresis. A modification is made here to the PL method that allows it to be more readily applied to numerical models by eliminating the need to store a large number of soil moisture reversal points. The modified-PL method largely eliminates any artificial pumping error and so essentially retains the accuracy of the original PL approach. The modified-PL method is implemented in HYDRUS-1D (version 2.0), which is then used to simulate cyclic capillary fringe dynamics to show the influence of removing artificial pumping errors and to demonstrate the ease of implementation. Artificial pumping errors are shown to be significant for the soils and system characteristics used here in numerical experiments of transport above a fluctuating watertable. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to conduct a number of controlled digestions to obtain easily comparable cellulose solubilisation rates and to compare these rates to those found in the literature to see which operational differences were significant in affecting cellulose degradation during anaerobic digestion. The results suggested that differences in volumetric cellulose solubilisation rates were not indicative of the true performance of cellulose digestion systems. When cellulose solubilisation rates were normalised by the mass of cellulose in the reactor at each time step, the comparison of the rates became more meaningful. Cellulose solubilisation was surface area limited. Therefore, changes in the loading rate of cellulose to the reactor altered the volumetric solubilisation rate without changing the mass normalised rate. Comparison of mass normalised solubilisation rates from this study and the literature demonstrated that differences in reactor configuration and operational conditions did not significantly impact on the solubilisation rate whereas the difference in composition of the microbial communities showed a marked effect. This work highlights the importance of using appropriately normalised data when making comparisons between systems with differing operational conditions. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The total number of nephrons in normal human kidneys varies over a 10-fold range. This variation in total nephron number leads us to question whether low nephron number increases the risk of renal disease in adulthood. This review considers the available evidence in humans linking low nephron number/reduced nephron endowment and the susceptibility to renal disease. Total nephron number in humans has been directly correlated with birth weight and inversely correlated with age, mean glomerular volume, and hypertension. Low nephron number may be the result of suboptimal nephrogenesis during kidney development and/or loss of nephrons once nephrogenesis has been completed. Low nephron number is frequently, but not always, associated with hypertrophy of remaining glomeruli. This compensatory hypertrophy has also been associated with a greater susceptibility for kidney disease. Three human studies have reported reduced nelphron number in subjects with a history of hypertension. This correlation has been observed in White Europeans, White Americans (but not African Americans) and Australian Aborigines. Studies in additional populations are required, as well as a greater understanding of the fetal environmental and genetic determinants of low nephron number.
Resumo:
Solvation. pressure due to adsorption of fluids in porous materials is the cause of elastic deformation of an adsorbent, which is accessible to direct experimental measurements. Such a deformation contributes to the Helmholtz free energy of the whole adsorbent-adsorbate system due to accumulation of compression or tension energy by the solid. It means that in the general case the solid has to be considered as not solely a source of the external potential field for the fluid confined in the pore volume, but also as thermodynamically nonmert component of the solid-fluid system. We present analysis of nitrogen adsorption isotherms and heat of adsorption in slit graphitic pores accounting for the adsorption deformation by means of nonlocal density functional theory. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We provide here a detailed theoretical explanation of the floating molecule or levitation effect, for molecules diffusing through nanopores, using the oscillator model theory (Phys. Rev. Lett. 2003, 91, 126102) recently developed in this laboratory. It is shown that on reduction of pore size the effect occurs due to decrease in frequency of wall collision of diffusing particles at a critical pore size. This effect is, however, absent at high temperatures where the ratio of kinetic energy to the solid-fluid interaction strength is sufficiently large. It is shown that the transport diffusivities scale with this ratio. Scaling of transport diffusivities with respect to mass is also observed, even in the presence of interactions.