166 resultados para environmental costs
Resumo:
Negative impacts of noise exposure on health and performance may result in part from learned helplessness, the syndrome of deficits typically produced by exposure to uncontrollable events. People may perceive environmental noise to be uncontrollable, and several effects of noise exposure appear to parallel learned helplessness deficits. In the present socioacoustic survey (N = 1,015), perceived control over aircraft noise correlated negatively with some effects of noise (though not others). Furthermore, these effects were better predicted by perceived control than by noise level. These observational data support the claim that learned helplessness contributes to the effects of noise exposure.
Resumo:
Following the Ninth International Congress of Toxicology (ICT-IX) and its satellite meeting ‘The International Conference on the Environmental Toxicology of Metals and Metalloids’ held in 2001 in Australia, a special issue on Arsenic was published in July 2002 (Toxicology Letters, 133(1), 1–120, 2002). We felt that it was timely to follow up with a special issue covering a wider range of metals and metalloids. Participants from the above conferences were invited to contribute to this special issue on ‘Environmental Toxicology of Metals and Metalloids’. This special issue consists of 11 manuscripts, representing up to date studies on a number of important harmful elements including aluminium, arsenic, cadmium, selenium, tin (tributyltin) and zinc. It illustrates the multidisciplinary nature of modern research in environmental toxicology involving chemical, biological and molecular technological approaches. It has been our great pleasure to produce this special issue. We would like to thank the authors for their contributions. We greatly appreciate the guidance and assistance provided by Dr J.P. Kehrer (Managing Editor), Dr Lulu Stader (Senior Publishing Editor) and their colleagues at Elsevier Science.
Resumo:
The focus for interventions and research on physical activity has moved away from vigorous activity to moderate-intensity activities, such as walking. In addition, a social ecological approach to physical activity research and practice is recommended. This approach considers the influence of the environment and policies on physical activity. Although there is limited empirical published evidence related to the features of the physical environment that influence physical activity, urban planning and transport agencies have developed policies and strategies that have the potential to influence whether people walk or cycle in their neighbourhood. This paper presents the development of a framework of the potential environmental influences on walking and cycling based on published evidence and policy literature, interviews with experts and a Delphi study. The framework includes four features: functional, safety, aesthetic and destination; as well as the hypothesised factors that contribute to each of these features of the environment. In addition, the Delphi experts determined the perceived relative importance of these factors. Based on these factors, a data collection tool will be developed and the frameworks will be tested through the collection of environmental information on neighbourhoods, where data on the walking and cycling patterns have been collected previously. Identifying the environmental factors that influence walking and cycling will allow the inclusion of a public health perspective as well as those of urban planning and transport in the design of built environments. (C) 2002 Elsevier Science Ltd., All rights reserved.
Resumo:
In order to understand rock bolt Stress Corrosion Cracking (SCC), a series of experiments have been performed in Linearly Increasing Stress Test (LIST) apparatus. One series of experiments determined the threshold stress of various bolt metallurgies (900 MPa for Steel A, and 800 MPa for Steel B and C). The high values of threshold stress suggest that SCC begins in rock bolts when they are sheared by moving rock strata. Typical crack velocity values have been measured to be 2.5 x 10(-8) m s(-1), indicating that there is not much benefit for rock bolt steel of higher fracture toughness. Another series of experiments were performed to understand the environmental conditions causing SCC of steel A and galvanised Steel A rock bolt steel. SCC only occurred for environmental conditions for which produce hydrogen on the sample surface, leading to hydrogen embrittlement and SCC. Fracture surfaces of LIST samples failed by SCC were found to display the same fracture regions as fracture surfaces of rock bolts failed in service by SCC: Tearing Topography Surface (TTS), Corrugated Irregular Surface (CIS), quasi Micro Void Coalescence (qMVC) and Fast Fracture Surface (FFS). Water chemistry analysis were carried out on samples collected from various Australian mines in order to compare laboratory electrolyte conditions to those found in underground mines.
Resumo:
On the basis of a spatially distributed sediment budget across a large basin, costs of achieving certain sediment reduction targets in rivers were estimated. A range of investment prioritization scenarios were tested to identify the most cost-effective strategy to control suspended sediment loads. The scenarios were based on successively introducing more information from the sediment budget. The relationship between spatial heterogeneity of contributing sediment sources on cost effectiveness of prioritization was investigated. Cost effectiveness was shown to increase with sequential introduction of sediment budget terms. The solution which most decreased cost was achieved by including spatial information linking sediment sources to the downstream target location. This solution produced cost curves similar to those derived using a genetic algorithm formulation. Appropriate investment prioritization can offer large cost savings because the magnitude of the costs can vary by several times depending on what type of erosion source or sediment delivery mechanism is targeted. Target settings which only consider the erosion source rates can potentially result in spending more money than random management intervention for achieving downstream targets. Coherent spatial patterns of contributing sediment emerge from the budget model and its many inputs. The heterogeneity in these patterns can be summarized in a succinct form. This summary was shown to be consistent with the cost difference between local and regional prioritization for three of four test catchments. To explain the effect for the fourth catchment, the detail of the individual sediment sources needed to be taken into account.
Resumo:
The diversity and community structures of symbiotic dinoflagellates are described from reef invertebrates in southern and central provinces of the Great Barrier Reef (GBR), Australia, and Zamami Island, Okinawa, Japan. The symbiont assemblages from region to region were dominated by Clade C Symbiodinium spp. and consisted of numerous host-specific and/or rare types (specialists), and several types common to many hosts (generalists). Prevalence in the host community among certain host-generalist symbionts differed between inshore and offshore environments, across latitudinal (central versus southern GBR) gradients, and over wide geographic ranges (GBR versus Okinawa). One particular symbiont (C3h) from the GBR had a dramatic shift in dominance. Its prevalence ranged from being extremely rare, or absent on high-latitude reefs to dominating the scleractinian diversity on a mid-latitude inshore reef. These changes occurred among coral fauna whose larvae must acquire symbionts from environmental sources (horizontal symbiont acquisition). Such differences did not occur among 'vertical transmitters' such as Porites spp., Montipora spp. and pocilloporids (corals that directly transmit symbionts to their offspring) or among those hosts displaying 'horizontal acquisition', but that associate with specific symbionts. Most host-specialized types were found to be characteristic of a particular geographic region (i.e. Okinawa versus Central GBR versus Southern GBR). The mode of symbiont acquisition may play an important role in how symbiont composition may shift in west Pacific host communities in response to climate change. There is no indication that recent episodes of mass bleaching have provoked changes in host-symbiont combinations from the central GBR.
Resumo:
Variation in larval quality has been shown to strongly affect the post-metamorphic performance of a wide range of marine invertebrate species. Extending the larval period of non-feeding larvae strongly affects post-metamorphic survival and growth in a range of species. These 'carry-over' effects are assumed to be due to changes in larval energetic reserves but direct tests are surprisingly rare. Here, we examine the energetic costs ( relative to the costs of metamorphosis) of extending the larval period of the colonial ascidian Diplosoma listerianum. We also manipulated larval activity levels and compared the energy consumption rates of swimming larvae and inactive larvae. Larval swimming was, energetically, very costly relative to either metamorphosis or merely extending the larval period. At least 25% of the larval energetic reserves are available for larval swimming but metamorphosis was relatively inexpensive in this species and larval reserves can be used for post-metamorphic growth. The carry-over effects previously observed in this species appear to be nutritionally mediated and even short (< 3 h) periods of larval swimming can significantly deplete larval energy reserves.
Resumo:
A simple framework was used to analyse the determinants of potential yield of sunflower (Helianthus annuus L.) in a subtropical environment. The aim was to investigate the stability of the determinants crop duration, canopy light interception, radiation use efficiency (RUE), and harvest index (HI) at 2 sowing times and with 3 genotypes differing in crop maturity and stature. Crop growth, phenology, light interception, yield, prevailing temperature, and radiation were recorded and measured throughout the crop cycle. Significant differences in grain yield were found between the 2 sowings, but not among genotypes within each sowing. Mean yields (0% moisture) were 6 . 02 and 2 . 17 t/ha for the first sowing, on 13 September (S1), and the second sowing, on 5 March (S2), respectively. Exceptionally high yields in S1 were due to high biomass assimilation associated with the high radiation environment, high light interception owing to a greater leaf area index, and high RUE (1 . 47-1 . 62 g/MJ) across genotypes. It is proposed that the high RUE was caused by high levels of available nitrogen maintained during crop growth by frequent applications of fertiliser and sewage effluent as irrigation. In addition to differences in the radiation environment, the assimilate partitioned to grain was reduced in S2 associated with a reduction in the duration of grain-filling. Harvest index was 0 . 40 in S1 and 0 . 25 in S2. It is hypothesised that low minimum temperatures experienced in S2 reduced assimilate production and partitioning, causing premature maturation.
Resumo:
This paper reports on measurements of crack growth by environmental assisted fracture (EAF) for 4340 steel in water and in air at various relative humidities. Of most interest is the observation of slow crack propagation in dry air. Fractographic analysis leads to the strong suggestion that this slow crack propagation is due to hydrogen cracking caused by internal hydrogen in solid solution inside the sample material.