110 resultados para de novo synthesis
Resumo:
This paper summarises the major findings from the Quake Impact Study (QIS), a four-phase longitudinal project that was conducted in the aftermath of the 1989 Newcastle (Australia) earthquake. A total of 3,484 subjects participated in at least one component of the QIS, comprising a stratified sample of 3,007 drawn from community electoral rolls and 477 from specially targeted supplementary samples (the injured, the displaced, the owners of damaged businesses, and the helpers). Subjects' initial earthquake experiences were rated in terms of weighted indices of exposure to threat and disruption. Psychological morbidity was measured at each phase using the General Health Questionnaire (GHQ-12) and the Impact of Event Scale (IES). Selected findings and key conclusions are presented for each of six areas of investigation: service utilisation during the first 6 months post-disaster; patterns of earthquake experience and short-term (6-month) psychosocial outcome; earthquake exposure and medium term (2-year) psychosocial outcome; vulnerability factors and medium-term psychosocial outcome: specific community groups at increased risk (e.g., the elderly and immigrants from non-English-speaking backgrounds); the effects of stress debriefing for helpers. Threshold morbidity (i.e., likely caseness) rates are also presented for a broad range of subgroups. In addition to presenting an overview of the QIS, this paper synthesises the major findings and discusses their implications for future disaster management and research from a mental health perspective.
Resumo:
alpha-Aspartyl-containing cyclic pentapeptides were synthesised in high yields using a strategy that maintained fluorenylmethyl protection on the aspartic acid side chain during chain assembly, resin cleavage and cyclisation of the linear precursors. Tetra-n-butylammonium fluoride treatment of the fluorenylmethyl-protected cyclic peptides catalysed imide formation, whereas piperidine-induced deprotection resulted in good yields of the target cyclic peptides.
Resumo:
The polycondensation of squaric acid with 1,2-(9-Ethylcarbazol-3-yl)ethene and N-ethyliminostilbene in polyphosphoric acid yielded insoluble polymers which included substituted phosphate groups on the phenyl rings. The presence of phosphorus in these polymers was identified using solid-state P-31 NMR and EDAX techniques. Furthermore the phosphate groups were not ionic, hence no charge-balancing anions were present; Both polymers did not electrically conduct but exhibited dielectric breakdown values of 0.1 and 0.06 MV cm(-1) respectively.
Resumo:
Sucrose:sucrose fructosyltransferase (SST) activity was partially purified from whole shoots of Lolium rigidum by a combination of affinity chromatography, gel filtration and anion-exchange chromatography. The SST activity co-eluted with some fructan:fructan fructosyltransferase (FFT) and invertase activities and consequently the partially purified preparation was termed the fructosyltransferase (FT) preparation. The SST-like activity in the FT preparation was purified 214-fold and had an apparent molecular mass of 84 000. The FT preparation contained several peptides with an apparent pI of 4.6-4.7. When assayed with sucrose concentrations up to 600 mM, the FT preparation synthesized 1-kestose at all concentrations, and synthesized 6-kestose at concentrations of 150 mM and greater. The K-m of 1-kestose production was 0.2 M. When the FT preparation was assayed at a concentration of activity approximately half that measured in fresh tissue with 100 mM sucrose, 1-kestose, or 6(G)-kestose as substrates, fructans of degree of polymerization (DP) less than or equal to 5 were synthesized. A partially purified FFT activity, free of SST and invertase activities, which synthesized beta-2,1-glycosidic linked oligofructans of DP less than or equal to 6, was combined in vitro with the FT preparation (FFT-FT preparation) to give a ratio of SST:FFT activities similar to that measured in crude enzyme extracts from L. rigidum. The FFT-FT preparation synthesized oligofructans when assayed with 100 mM concentrations of sucrose, 1-kestose or 6(G)-kestose, but was not able to synthesize fructans of DP greater than or equal to 6 even after extended assays of up to 10 h. The FFT-FT preparation was also assayed with 100 mM sucrose with small amounts of concentrated sucrose added periodically during the assay to maintain the substrate concentration. In this assay, the FFT-FT preparation synthesized fructans up to an apparent DP of 17 or greater. The fructans of DP greater than or equal to 6 synthesized in the assay appeared to form two molecular series containing both beta-2,1- and beta-2,6-glycosidic linked fructosyl residues with terminal or internal glucosyl residues. The apparent rate of SST activity in the assay of the FFT-FT preparation was greater than that measured in a similar assay of the FT preparation alone which did not result in fructans with DP greater than or equal to 6. It was concluded that the FFT-FT preparation, when assayed with a continual supply of sucrose, contained a factor which promoted synthesis of fructans of DP greater than or equal to 6 and synthesis of beta-2,B-glycosidic linkages between fructosyl residues.
Resumo:
Normorphine was synthesised from morphine by thermal decomposition of an N-alpha-chloroethylchloroformate adduct, and purified (> 98% purity) using semipreparative HPLC with ultraviolet detection. Normorphine-3-glucuronide (NM3G) was biochemically synthesised using the substrate normorphine, uridine diphosphoglucuronic acid and Sprague-Dawley rat liver microsomes in a 75% yield (relative to normorphine base). The synthesised NM3G was purified by precipitation and washing with acetonitrile. Determinations of purity using HPLC with electrochemical and ultraviolet detection confirmed that the NM3G produced was of high (> 99%) purity. Mass spectrometry, fourier transform infrared spectrophotometry and nuclear magnetic resonance spectrometry confirmed the structure, especially placement of the glucuronide moiety at the 3-phenolic position and not at the 17-nitrogen. Administration of NM3G by the intracerebroventricular (icy) route to rats in doses of 2.5 and 7.5 mu g resulted in the development of central nervous system (CNS) excitatory behavioural effects including myoclonus, chewing, wet-dog shakes, ataxia and explosive motor behaviour. At an icy dose of 7.5 mu g, NM3G also induced short periods of tonic-clonic convulsive activity. Thus, NM3G elicits CNS excitation following supraspinal administration in a manner analogous to morphine-3-glucuronide (M3G), the major metabolite of morphine (1). Further studies are required to determine whether NM3G attenuates morphine-induced antinociception in se similar manner to M3G.
Resumo:
The synthesis of chromium carbides, Cr7C3 and Cr3C2, by mechanically allowing chromium and carbon powders has been investigated. Milling conditions were found to have a strong influence on the evolution of microstructure, with high collision energies being required to form carbide phases. Milling at intermediate energy levels resulted in the formation of an amorphous phase, and with low energy conditions only grain size refinement of Cr occurred with no evidence of any reaction between Cr and C. The amorphous phase was found to be the precursor to carbide formation. (C) 1997 Elsevier Science S.A.
Resumo:
O-Acyl esters were prepared from salicylic acid and diflunisal by esterification with the appropriate acyl anhydride (in the presence of sulfuric acid at 80 degrees C) or acyl chloride (in the presence of pyridine at 0 degrees C). Synthesis, identification and characterization of these compounds is described. In vitro hydrolysis, solubility and protein binding studies of these O-acyl esters were performed. For the diflunisal esters, the melting points fell as the side chain was increased from ethyl to pentyl. The melting points showed no significant difference as the length of the side chain was increased from pentyl to heptyl. The aspirin analogues showed a similar trend, The relationship between solubility and carbon chain length agreed closely with that for the melting points with carbon chain length. In vitro non-enzymatic hydrolysis studies concluded that: (1) hydrolysis rate constants generally decreased with carbon chain length; (2) the diflunisal esters have shorter half lives compared with their salicylate counterparts; and (3) the in vitro hydrolysis of these compounds was retarded by the presence of bovine serum albumin. Protein binding experiments showed that the strength of binding of the aspirin and diflunisal analogues to bovine serum albumin increased with carbon chain length. (C) 1997 Elsevier Science B.V.
Resumo:
N-Acylisoxazol-5-ones lose carbon dioxide under photochemical and thermal conditions affording iminocarbenes which undergo intramolecular cyclisation through the oxygen of the acyl group to give oxazoles. Under photochemical conditions those acylisoxazolones with electron withdrawing groups at C-4 usually give high yields of oxazoles, while those with electron donating groups at C-4 give only poor yields: the reverse is observed under thermal conditions.
Resumo:
5-Oxodihydroisoxazoles react with thiocarbonyl chlorides to afford N-thioacylisoxazol-5(2H)-ones which lose carbon dioxide under photochemical conditions and undergo intramolecular cyclisation of the iminocarbene to afford thiazoles, However, in some cases loss of carbon dioxide is accompanied by loss of sulfur, giving 1,3-oxazin-6-ones.
Resumo:
This paper describes the synthesis of 3-amino-3-(4-chlorophenyl)propanoic acid and the corresponding phosphonic and sulfonic acids, lower homologues of baclofen, phaclofen and saclofen respectively. The chlorinated acids were all weak specific antagonists of GABA at the GABAB receptor, with the sulfonic acid (pA(2) 4.0) being stronger than the phosphonic acid (pA(2) 3.8) and carboxylic acid (pA(2) 3.5).
Resumo:
The biomimetic synthesis of novel lipids 1, 2, 8 and 10 obtained from the southern Australian marine brown alga Notheia anomala has been achieved, and features the acid mediated conversion of methylene interrupted bisepoxides to tetrahydrofurans. (C) 1997 Elsevier Science Ltd.
Resumo:
The demonstration that mutations in the Patched (PTCH) gene cause nevoid basal cell carcinoma syndrome (NBCCS) has led to the identification of the exact molecular lesion in a percentage of individuals with the syndrome, In addition, it has been possible to determine, through molecular analysis of parents and other relatives of these individuals, if the mutation is inherited or has arisen de novo, We have previously reported 28 mutations in individuals with NBCCS, and here we present an additional 4 novel mutations, We have also analyzed relatives of a number of the individuals in whom we have found mutations, In total we have identified 8 individuals who carry a de novo mutation in the PTCH gene, In 5 of these cases, clinical and radiological examination had not unequivocally ruled out a diagnosis in one of the parents, This helps to define the clinical phenotype and suggests that diagnostic criteria in this complex syndrome may require review. (C) 1997 Wiley-Liss, Inc.
Resumo:
Background: Periodontal wound healing and regeneration require that new matrix be synthesized, creating an environment into which cells can migrate. One agent which has been described as promoting periodontal regeneration is an enamel matrix protein derivative (EMD). Since no specific growth factors have been identified in EMD preparations, it is postulated that EMD acts as a matrix enhancement factor. This study was designed to investigate the effect of EMD in vitro on matrix synthesis by cultured periodontal fibroblasts. Methods: The matrix response of the cells was evaluated by determination of the total proteoglycan synthesis, glycosaminoglycan profile, and hyaluronan synthesis by the uptake of radiolabeled precursors. The response of the individual proteoglycans, versican, decorin, and biglycan were examined at the mRNA level by Northern blot analysis. Hyaluronan synthesis was probed by identifying the isotypes of hyaluronan synthase (HAS) expressed in periodontal fibroblasts as HAS-2 and HAS-3 and the effect of EMD on the levels of mRNA for each enzyme was monitored by reverse transcription polymerase chain reaction (RTPCR). Comparisons were made between gingival fibroblast (GF) cells and periodontal ligament (PDLF) cells. Results: EMD was found to significantly affect the synthesis of the mRNAs for the matrix proteoglycans versican, biglycan, and decorin, producing a response similar to, but potentially greater than, mitogenic cytokines. EMD also stimulated hyaluronan synthesis in both GF and PDLF cells. Although mRNA for HAS-2 was elevated in GF after exposure to EMD, the PDLF did not show a similar response. Therefore, the point at which the stimulation of hyaluronan becomes effective may not be at the level of stimulation of the mRNA for hyaluronan synthase, but, rather, at a later point in the pathway of regulation of hyaluronan synthesis. In all cases, GF cells appeared to be more responsive to EMD than PDLF cells in vitro. Conclusions: EMD has the potential to significantly modulate matrix synthesis in a manner consistent with early regenerative events.
Resumo:
Exposure of insulin-sensitive tissues to free fatty acids can impair glucose disposal through inhibition of carbohydrate oxidation and glucose transport. However, certain fatty acids and their derivatives can also act as endogenous ligands for peroxisome proliferator-activated receptor gamma (PPARgamma ), a nuclear receptor that positively modulates insulin sensitivity. To clarify the effects of externally delivered fatty acids on glucose uptake in an insulin-responsive cell type, we systematically examined the effects of a range of fatty acids on glucose uptake in 3T3-L1 adipocytes. Of the fatty acids examined, arachidonic acid (AA) had the greatest positive effects, significantly increasing basal and insulin-stimulated glucose uptake by 1.8- and 2-fold, respectively, with effects being maximal at 4 h at which time membrane phospholipid content of AA was markedly increased. The effects of AA were sensitive to the inhibition of protein synthesis but were unrelated to changes in membrane fluidity. AA had no effect on total cellular levels of glucose transporters, but significantly increased levels of GLUT1 and GLUT4 at the plasma membrane. While the effects of AA were insensitive to cyclooxygenase inhibition, the lipoxygenase inhibitor, nordihydroguaiaretic acid, substantially blocked the AA effect on basal glucose uptake. Furthermore, adenoviral expression of a dominant-negative PPARgamma mutant attenuated the AA potentiation of basal glucose uptake. Thus, AA potentiates basal and insulin-stimulated glucose uptake in 3T3-L1 adipocytes by a cyclooxygenase-independent mechanism that increases the levels of both GLUT1 and GLUT4 at the plasma membrane. These effects are at least partly dependent on de novo protein synthesis, an intact lipoxygenase pathway and the activation of PPARgamma with these pathways having a greater role in the absence than in the presence of insulin.