73 resultados para anelastic relaxation
Resumo:
In human heart there is now evidence for the involvement of four beta-adrenoceptor populations, three identical to the recombinant beta(1)-, beta(2)- and beta(3)-adrenoceptors, and a fourth as yet uncloned putative beta-adrenoceptor population, which we designate provisionally as the cardiac putative beta(4)-adrenoceptor. This review described novel features of beta-adrenoceptors as modulators of cardiac systolic and diastolic function. We also discuss evidence for modulation by unoccupied beta(1)- and beta(2)-adrenoceptors. Human cardiac and recombinant beta(1)- and beta(2)-adrenoceptors are both mainly coupled to adenylyl cyclase through Gs protein, the latter more tightly than the former. Activation of both human beta(1)- and beta(2)-adrenoceptors not only increases cardiac force during systole but also hastens relaxation through cyclic AMP-dependent phosphorylation of phospholamban and troponin I, thereby facilitating diastolic function. Furthermore, both beta(1) and beta(2)-adrenoceptors can mediate experimental arrhythmias in human cardiac preparations elicited by noradrenaline and adrenaline. Human ventricular beta(3)-adrenoceptors appear to be coupled to a pertussis toxin-sensitive protein (Gi?). beta(3)-Adrenoceptor-selective agonists shorten the action potential and cause cardiodepression, suggesting direct coupling of a Gi protein to a K+ channel. In a variety of species, including man, cardiac putative beta(4)-adrenoceptors mediate cardiostimulant effects of non-conventional partial agonists, i.e. high affinity beta(1)- and beta(2)-adrenoceptor blockers that cause agonist effects at concentrations considerably higher than those that block these receptors. Putative beta(4)-adrenoceptors appear to be coupled positively to a cyclic AMP-dependent cascade and can undergo some desensitisation.
Resumo:
Changes in molecular motion in blends of PEO-PVPh have been studied using measurements of C-13 T-1 rho relaxation times. C-13 T-1 rho relaxation has been confirmed as arising from spin-lattice interactions by observation of the variation in T-1 rho with rf field strength and temperature. In the pure homopolymers a minimum in T-1 rho is observed at ca. 50 K above the glass transition temperatures detected by DSC. After blending, the temperature of the minimum in T-1 rho for PEO increased, while that for PVPh decreased, however, the minima, which correspond to the temperatures where the average correlation times for reorientation are close to 3.1 mu s, are separated by 45 K (in a 45% PEO-PVPh blend). These phenomena are explained in terms of the local nature of T-1 rho measurements. The motions of the individual homopolymer chains are only partially coupled in the blend. A short T-1 rho has been observed for protonated aromatic carbons, and assigned to phenyl rings undergoing large-angle oscillatory motion, The effects of blending, and temperature, on the proportion of rings undergoing oscillatory motion are analyzed.
Resumo:
Under the conditions of the rotating wave approximation (RWA), a transition strongly driven by a resonant oscillating field displays the well known symmetric Autler-Townes doublet. However, if the counter-rotating component, neglected in the RWA, is taken into account, the Bloch-Siegert shift gives rise to an Autler-Townes doublet of unequal intensity even in the case of a resonant driving field. This effect is investigated theoretically in a V-shaped three-level double-resonance configuration and the results are presented in this paper. An interesting observation is that the level of asymmetry not only depends on the driving-field intensity but also on the characteristics of the driven system including relaxation rates and equilibrium population distributions.
Resumo:
0Nuclear magnetic resonance (n.m.r.) imaging was used to study the ingress of water into poly(tetrahydrofurfuryl methacrylate-co-hydroxyethyl methacrylate). The study offers strong evidence that the diffusion is Fickian in nature. The diffusion coefficient, D, obtained by fitting the underlying diffusion profile, attainable from the images, according to the equation for Fickian diffusion, is 1.5 x 10(-11) m(2) s(-1), which is in good correlation with the value of 2.1 x 10(-11) m(2) s(-1), obtained from mass uptake measurements. Additionally, from the T-2-weighted images, Superimposed features observed in addition to the underlying Fickian diffusion profiles were shown to have a longer spin-spin relaxation time, T-2. This Suggests the presence of two types of water within the polymer matrix; a less mobile phase of absorbed water that is interacting strongly with the polymer matrix and a more mobile phase of absorbed water residing within the cracks observed in the environmental scanning electron micrograph. (C) 1997 Elsevier Science Ltd.
Resumo:
1. Evidence for a 'putative beta(4)-adrenoceptor' originated over 20 years ago when cardiostimulant effects were observed to nonconventional partial agonists, These agonists were originally described as beta(1)- and beta(2)-adrenoceptor antagonists; however, they cause cardiostimulant effects at much higher concentrations than those required to block beta(1)- and beta(2)-adrenoceptors. Cardiostimulant effects of non-conventional partial agonists have been observed in mouse, rat, guinea-pig, cat, ferret and human heart tissues, 2. The receptor is expressed in several heart regions, including the sinoatrial node, atrium and ventricle, 3. The receptor is resistant to blockade by most antagonists that possess high affinity for beta(1)- and beta(2)- adrenoceptors, but is blocked with moderate affinity by (-)-bupranolol and CGP 20712A. 4. The receptor is pharmacologically distinct from the beta(3)-adrenoceptor. Micromolar concentrations of beta(3)-adrenoceptor agonists have no agonist or blocking activity, The receptor is also resistant to blockade by a beta(3)-adrenoceptor-selective antagonist. 5. The receptor mediates increases in cAMP levels and cAMP-dependent protein kinase (PK) A activity in cardiac tissues. Phosphodiesterase inhibition potentiates the positive chronotropic and inotropic effects of non-conventional partial agonists. 6. The receptor mediates hastening of atrial and ventricular relaxation, which is consistent with involvement of a cAMP-dependent pathway. 7. The non-conventional partial agonist (-)-[H-3]-CGP 12177A labels the cardiac putative beta(4)-adrenoceptor, Non-conventional partial agonists compete for binding with affinities that are closely similar to their agonist potencies, Catecholamines compete for binding in a stereoselective manner with a rank order of affinity of (-)-R0363 > (-)-isoprenaline > (-)-noradrenaline greater than or equal to (-)-adrenaline much greater than (-)-isoprenaline, suggesting that catecholamines can interact with the receptor. 8. The putative beta(4)-adrenoceptor appears to be coupled to the G(s)-adenylyl cyclase system, which could serve as a guide to its future cloning, Activation of the receptor may plausibly improve diastolic function but could also mediate arrhythmias.
Resumo:
This paper outlines the ethical arguments used in the Australian debate about whether or not to relax the prohibition on cannabis use by adults. Over the past two decades a rising prevalence of cannabis use in the Australian population has led to proposals for the decriminalization of the personal use of cannabis. Three states and territories have removed criminal penalties for personal use while criminal penalties are rarefy imposed in the remaining states. Libertarian arguments for legalization of cannabis use have attracted a great deal of media interest but very little public and political support. Other arguments in favour of decriminalization have attracted more support. One has been the utilitarian argument that prohibition has failed to deter cannabis use and the social costs of its continuation outweigh any benefits that it produces. Another has been the argument from hypocrisy that cannabis is less harmful than alcohol and so, on the grounds of consistency, if alcohol is legally available then so should cannabis. To date public opinion has not favoured legalization, although support for the decriminalization of personal cannabis use has increased. In the long term, the outcome of the debate may depend more upon trends in cannabis use and social attitudes among young adults than upon the persuasiveness of the arguments for a relaxation of the prohibition of cannabis.
Resumo:
We have previously shown that H-1 pulsed-field-gradient (PFG) NMR spectroscopy provides a facile method for monitoring protein self-association and can be used, albeit with some caveats, to measure the apparent molecular mass of the diffusant [Dingley et al. (1995) J. Biomol. NMR, 6, 321-328]. In this paper we show that, for N-15-labelled proteins, selection of H-1-N-15 multiple-quantum (MQ) coherences in PFG diffusion experiments provides several advantages over monitoring H-1 single-quantum (SQ) magnetization. First, the use of a gradient-selected MQ filter provides a convenient means of suppressing resonances from both the solvent and unlabelled solutes. Second, H-1-N-15 zero-quantum coherence dephases more rapidly than H-1 SQ coherence under the influence of a PFG. This allows the diffusion coefficients of larger proteins to be measured more readily. Alternatively, the gradient length and/or the diffusion delay may be decreased, thereby reducing signal losses from relaxation. In order to extend the size of macromolecules to which these experiments can be applied, we have developed a new MQ PFG diffusion experiment in which the magnetization is stored as longitudinal two-spin order for most of the diffusion period, thus minimizing sensitivity losses due to transverse relaxation and J-coupling evolution.
Resumo:
We have previously shown that human leukaemia inhibitory factor (hLIF) inhibits perivascular cuff-induced neointimal formation in the rabbit carotid artery. Since nitric oxide (NO) is a known inhibitor of smooth muscle growth, NO synthase (NOS) activity in the presence of hLIF was examined in vivo and in vitro. In rabbit aortic smooth muscle cell (SMC) culture, significant NOS activity was observed at 50 pg/ml hLIF, with maximal activity at 5 ng/ml. In the presence of the NOS inhibitor L-NAME, hLIF-induced activation of NOS was greatly decreased, however it was still 63-fold higher than in control (p < 0.05). SMC-DNA synthesis was significantly reduced (-47%) following incubation with hLIF plus L-arginine, the substrate required for NO production (p < 0.05), with no effect observed in the absence of L-arginine. Silastic cuff placement over the right carotid artery of rabbits resulted in a neointima 19.3 +/- 5.4% of total wall cross-sectional area, which was increased in the presence of L-NAME (27.0 +/- 2.0%; p < 0.05) and reduced in the presence of L-arginine (11.3 +/- 2.0%; p < 0.05). The effect of L-arginine was ameliorated by co-administration of L-NAME (16.4 +/- 1.5%). However, administration of L-NAME with hLIF had no effect on the potent inhibition of neointimal formation by hLIF (3.2 +/- 2.5 vs. 2.1 +/- 5.4%, respectively). Similarly, with hLIF administration, NOS activity in the cuffed carotid increased to 269.0 +/- 14.0% of saline-treated controls and remained significantly higher with coadministration of L-NAME (188.5 +/- 14.7%). These results indicate that hLIF causes superinduction of NO by SMC, and that it is, either partially or wholly, through this mechanism that hLIF is a potent inhibitor of neointimal formation in vivo and of smooth muscle proliferation in vitro.
Resumo:
In pulmonary hypertension, changes in pulmonary vascular structure and function contribute to the elevation in pulmonary artery pressure. The time-courses for changes in function, unlike structure, are not well characterised. Medial hypertrophy and neomuscularisation and reactivity to vasoactive agents were examined in parallel in main and intralobar pulmonary arteries and salt-perfused lungs from rats exposed to hypoxia (10% O-2) for 1 and 4 weeks (early and established pulmonary hypertension, respectively). After 1 week of hypoxia, in isolated main and intralobar arteries, contractions to 5-hydroxytryptamine and U46619 (thromboxane-mimetic) were increased whereas contractions to angiotensins I and II and relaxations to acetylcholine were reduced. These alterations varied quantitatively between main and intralobar arteries and, in many instances, regressed between 1 and 4 weeks. The alterations in reactivity did not necessarily link chronologically with alterations in structure. In perfused lungs, constrictor responses to acute alveolar hypoxia were unchanged after 1 week but were increased after 4 weeks, in conjunction with the neomuscularisation of distal alveolar arteries. The data suggest that in hypoxic pulmonary hypertension, the contribution of altered pulmonary vascular reactivity to the increase in pulmonary artery pressure may be particularly important in the early stages of the disease.
Resumo:
The ligand-binding region of the low-density lipoprotein (LDL) receptor is formed by seven N-terminal, imperfect, cysteine-rich (LB) modules. This segment is followed by an epidermal growth factor precursor homology domain with two N-terminal, tandem, EGF-like modules that are thought to participate in LDL binding and recycling of the endocytosed receptor to the cell surface. EGF-A and the concatemer, EGF-AB, of these modules were expressed in Escherichia coli. Correct protein folding of EGF-A and the concatemer EGF-AB was achieved in the presence or absence of calcium ions, in contrast to the LB modules, which require them for correct folding. Homonuclear and heteronuclear H-1-N-15 NMR spectroscopy at 17.6 T was used to determine the three-dimensional structure of the concatemer. Both modules are formed by two pairs of short, anti-parallel beta -strands. In the concatemer, these modules have a fixed relative orientation, stabilized by calcium ion-binding and hydrophobic interactions at the interface. N-15 longitudinal and transverse relaxation rates, and {H-1}-N-15 heteronuclear NOEs were used to derive a model-free description of the backbone dynamics of the molecule. The concatemer appears relatively rigid, particularly near the calcium ion-binding site at the module interface, with an average generalized order parameter of 0.85 +/- 0.11. Some mutations causing familial hypercholesterolemia may now be rationalized. Mutations of D41, D43 and E44 in the EGF-B calcium ion-binding region may affect the stability of the linker and thus the orientation of the tandem modules. The diminutive core also provides little structural stabilization, necessitating the presence of disulfide bonds. The structure and dynamics of EGF-AB contrast with the N-terminal LB modules, which require calcium ions both for folding to form the correct disulfide connectivities and for maintenance of the folded structure, and are connected by highly mobile linking peptides. (C) 2001 Academic Press.
Resumo:
The diffusion of water into a series of hydroxyethyl methacrylate, HEMA, copolymers with tetrahydrofurfuryl methacrylate, THFMA, has been studied over a range of copolymer compositions using NMR imaging analyses. For polyHEMA the diffusion was found to be consistent with a Fickian model. The mass diffusion coefficient of water in polyHEMA at 37 degreesC was determined from the profiles of the diffusion front to be 1.5 x 10(-11) m(2) s(-1), which is less than the value based upon mass uptake, 2.0 x 10(-11) m(2) s(-1). The profiles of the water diffusion front obtained from the NMR images showed that stress was induced at the interface between the rubbery and glassy regions which led to formation of small cracks in this region of the glassy matrix of polyHEMA and its copolymers with mole fractions of HEMA greater than 0.6. Water was shown to be able to enter these cracks forming water pools. For copolymers of HEMA and THFMA with mole fractions of HEMA less than 0.6 the absence of cracks was attributed to the ability of the THFMA sequences to undergo stress relaxation by creep.
Resumo:
The internal flexibility of the central seven-membered ring of a series of tricyclic antidepressant drugs (TCAs), imipramine {l}, amitriptyline {2}, doxepin {3}, and dothiepin {4}, has been investigated by H-1 and C-13 nuclear magnetic (NMR) techniques. Two dynamic processes were examined: ring inversion and bridge flexing. H-1 NMR lineshape analysis was used to obtain ring inversion barriers for 2-4. These studies yielded energy barriers of 14.3, 16.7, and 15.7 +/- 0.6 kcal/mol for the hydrochloride salts of doxepin, dothiepin, and amitriptyline, respectively. The barriers for the corresponding free bases were lower by 0.6 kcal/mol on average. (CT1)-C-13 relaxation measurements were used to determine the degree of bridge flexing associated with the central seven-membered ring for all four compounds. By fitting the T-1 data to a two-state jump model, lifetimes and amplitudes of rapid bridge flexing motions were determined. The results show that imipramine has the fastest rate of bridge flexing, followed by amitriptyline, doxepin, and dothiepin. The pharmacological profiles of the TCAs are complex and they interact with many receptor sites, resulting in numerous side effects and a general lack of understanding of their precise mode of action in different anxiety-related disorders. They all have similar three-dimensional structures, which makes it difficult to rationalize their differing relative potency in different assays/clinical settings. However, the clear finding here that there are significantly different degrees of internal mobility suggests that molecular dynamics should be an additional factor considered when trying to understand the mode of action of this clinically important family of molecules. (C) 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:713-721, 2001.
Resumo:
Objective: To investigate the efficacy of a stress management programme on symptoms of colds and influenza in 27 university students before and after the examination period. Method: The incidence of symptoms, levels of negative affect, and secretion rate of secretory immunoglobulin A (sIgA) were recorded for 5 weeks before treatment, for the 4 weeks of treatment, and for 8 weeks after treatment in treated subjects and in 25 others who did not participate in stress management. Results: Symptoms decreased in treated subjects but not in controls during and after the examination period. Although sIgA secretion rate increased significantly after individual sessions of relaxation, resting secretion rate of sIgA did not increase over the course of the study. Negative affect decreased after examinations in both groups, but was not affected by treatment. Conclusion: Stress management reduced days of illness independently of negative affect and sIgA secretion rate. Although the component of treatment responsible for this effect has yet to be identified, psychological interventions may have a role in reducing symptoms of upper respiratory tract infection. (C) 2001 Elsevier Science Inc. All rights reserved.
The calibre of the Foramen of Panizza in Crocodylus porosus is variable and under adrenergic control
Resumo:
The foramen of Panizza is located within the outflow tract of the crocodilian heart, between the left and right aortas. It has been suggested that the foremen of Panizza has a variable calibre, which could explain the profound changes in the distribution of flows and pressure profiles recorded in the right and left aortas. We investigated this possibility using a modified in-situ perfused heart preparation in combination with isolated strip preparations from the outflow tract. In the perfused heart preparation, bolus injections of adrenaline increased the resistance in the foramen of Panizza, indicating a decrease in its diameter. Isolated strip preparations from the outflow tract showed a concentration-dependent increase in tension in response to adrenaline, while vasoactive intestinal polypeptide caused a relaxation in adrenaline pre-contracted strip preparations. We propose that an increase in the diameter of the foremen of Panizza may be important during pulmonary to systemic shunts to allow blood to flow from the left to right aorta (reverse foramen flow) in order to supply the carotid and coronary arteries. During non-shunting conditions, a constricted foramen may prevent excess flow from the right to left aorta during diastole.
Resumo:
Motion of chains of poly(ethylene oxide) within the interlayer spacing of 2:1 phyllosilicate/montmorillonite was studied with H-1 and C-13 NMR spectroscopy. Measurements of the H-1 NMR line widths and relaxation times across a large temperature range were used to determine the effect of bulk thermal transitions on polymer chain motion within the nanocomposites. The results were consistent with previous reports of low apparent activation energies of motion. Details of the frequency and geometry of motion were obtained from a comparison of the C-13 cross-polarity/magic-angle spinning spectra and relaxation times of the nanocomposite with those of the pure polymer. (C) 2001 John Wiley & Sons, Inc.