79 resultados para allelic imprinting
Resumo:
Microsatellites were isolated and characterized from Anopheles flavirostris, the principal malaria vector in the Philippines. Fifty of the 150 positive clones sequenced contained mostly dinucleotide microsatellites and only 16 had trinucleotide repeats. We designed primers from the unique sequences flanking 18 microsatellite loci. Of these, 11 loci produced successful amplification and revealed high levels of polymorphism; 86 alleles were detected with allele number ranging from 2 to 16 at each locus. The high allelic variability will make these microsatellite loci very useful for taxonomic and population genetic studies.
Resumo:
Ganoderma boninense (the causal agent of basal stem rot of oil palm in Papua New Guinea) has a tetrapolar mating system with multiple alleles. Investigations into the population structure of G. boninense, using interfertility between isolates as a marker, revealed that the population on oil palm was comprised predominantly of genetically distinct individuals, although a number of isolates were found to share single mating alleles. No direct hereditary relationship was found between isolates on neighbouring or spatially separated diseased palms, indicating that outcrossing had probably occurred over several generations in the founder population prior to colonization of oil palm. In this study, a total of 81 A and 83 B mating type alleles (factors) were detected with 18 allelic repeats at the A locus and 17 at the B locus. Alleles appeared to be randomly dispersed throughout the population in each study block, although there was a significantly (P
Resumo:
We have examined melanocortin-1 receptor (MC1R) variant allele frequencies in the general population and in a collection of adolescent dizygotic and monozygotic twins to determine statistical associations of pigmentation phenotypes with increased skin cancer risk. This included hair and skin color, freckling, mole count and sun exposed skin reflectance. Nine variants were studied and designated as either strong R (OR = 63; 95% CI 32-140) or weak r (OR = 5; 95% CI 3-11) red hair alleles. Penetrance of each MC1R variant allele was consistent with an allelic model where effects were multiplicative for red hair but additive for skin reflectance. To assess the interaction of the brown eye color gene BEY2/OCA2 on the phenotypic effects of variant MC1R alleles we imputed OCA2 genotype in the twin collection. A modifying effect of OCA2 on MC1R variant alleles was seen on constitutive skin color, freckling and mole count. In order to study the individual effects of these variants on pigmentation phenotype we have established a series of human primary melanocyte strains genotyped for the MC1R receptor. These include strains which are MC1R wild-type consensus, variant heterozygotes, and homozygotes for strong R alleles Arg151Cys and Arg160Trp. Ultrastructural analysis demonstrated that only consensus strains contained stage III and IV melanosomes in their terminal dendrites whereas Arg151Cys and Arg160Trp homozygous strains contained only immature stage I and II melanosomes. Such genetic association studies combined with the functional analysis of MC1R variant alleles in melanocytic cells should provide a link in understanding the association between pigmentary phototypes and skin cancer risk.
Resumo:
The ragged (Ra) spontaneous mouse mutant is characterised by abnormalities in its coat and cardiovascular system. Four alleles are known and we have previously described mutations in the transcription factor gene Sox18 in the Ra and Ra-J alleles. We report here Sox18 mutations in the remaining two ragged alleles, opossum (Ra-op) and ragged-like (Ragl). The single-base deletions cause a C-terminal frameshift, abolishing transcriptional trans-activation and impairing interaction with the partner protein MEF2C. The nature of these mutations, together with the near-normal phenotype of Sox18-null mice, suggests that the ragged mutant SOX18 proteins act in a dominant-negative fashion. The four ragged mutants represent an allelic series that reveal SOX18 structure-function relationships and implicate related SOX proteins in cardiovascular and hair follicle development. (C) 2003 Wiley-Liss, Inc.
Resumo:
Sco proteins are found in mitochondria and in a variety of oxidase positive bacteria. Although Sco is required for the formation of the Cu-A centre in a cytochrome oxidase of the aa(3) type, it was observed that oxidases with a Cu-A centre are not present in many bacteria that contain a Sco homologue. Two bacteria of this type are the pathogens Neisseria meningitidis and Neisseria gonorrhoeae. The sco genes of N. gonorrhoeae strain 1291 and N. meningitidis strain MC58 were cloned, inactivated by inserting a kanamycin resistance cassette and used to make knockout mutants by allelic exchange. Both N. gonorrhoeae and N. meningitidis sco mutants were highly sensitive to oxidative killing by paraquat, indicating that Sco is involved in protection against oxidative stress in these bacteria. (C) 2003 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
The relationships between MC1R gene variants and red hair, skin reflectance, degree of freckling and nevus count were investigated in 2331 adolescent twins, their sibs and parents in 645 twin families. Penetrance of each MC1R variant allele was consistent with an allelic model where effects were multiplicative for red hair but additive for skin reflectance. Of nine MC1R variant alleles assayed, four common alleles were strongly associated with red hair and fair skin (Asp84Glu, Arg151Cys, Arg160Trp and Asp294His), with a further three alleles having low penetrance (Val60Leu, Val92Met and Arg163Gln). These variants were separately combined for the purposes of this analysis and designated as strong 'R' (OR=63.3; 95% CI 31.9-139.6) and weak 'r ' (OR=5.1; 95% CI 2.5-11.3) red hair alleles. Red-haired individuals are predominantly seen in the R/R and R/r groups with 67.1 and 10.8%, respectively. To assess the interaction of the brown eye color gene OCA2 on the phenotypic effects of variant MC1R alleles we included eye color as a covariate, and also genotyped two OCA2 SNPs (Arg305Trp and Arg419Gln), which were confirmed as modifying eye color. MC1R genotype effects on constitutive skin color, freckling and mole count were modified by eye color, but not genotype for these two OCA2 SNPs. This is probably due to the association of these OCA2 SNPs with brown/green not blue eye color. Amongst individuals with a R/R genotype (but not R/r), those who also had brown eyes had a mole count twice that of those with blue eyes. This suggests that other OCA2 polymorphisms influence mole count and remain to be described.
Resumo:
The dopamine D4 receptor gene contains a polymorphic sequence consisting of a variable number of 48-base-pair (bp) repeats, and there have been a number of reports that this polymorphism is associated with variation in novelty seeking or in substance abuse and addictive behaviors. In this study we have assessed the linkage and association of DRD4 genotype with novelty seeking, alcohol use, and smoking in a sample of 377 dizygotic twin pairs and 15 single twins recruited from the Australian Twin Registry (ATR). We found no evidence of linkage or association of the DRD4 locus with any of the phenotypes. We made use of repeated measures for some phenotypes to increase power by multivariate genetic analysis, but allelic effects were still non-significant. Specifically, it has been suggested that the DRD4 7-repeat allele is associated with increased novelty seeking in males but we found no evidence for this, despite considerable power to do so. We conclude that DRD4 variation does not have an effect on use of alcohol and the problems that arise from it, on smoking, or on novelty seeking behavior. (C) 2003 Wiley-Liss, Inc.
Resumo:
Genetic diversity and population structure were investigated across the core range of Tasmanian devils (Sarcophilus laniarius; Dasyuridae), a wide-ranging marsupial carnivore restricted to the island of Tasmania. Heterozygosity (0.386-0.467) and allelic diversity (2.7-3.3) were low in all subpopulations and allelic size ranges were small and almost continuous, consistent with a founder effect. Island effects and repeated periods of low population density may also have contributed to the low variation. Within continuous habitat, gene flow appears extensive up to 50 km (high assignment rates to source or close neighbour populations; nonsignificant values of pairwise F-ST), in agreement with movement data. At larger scales (150-250 km), gene flow is reduced (significant pairwise F-ST) but there is no evidence for isolation by distance. The most substantial genetic structuring was observed for comparisons spanning unsuitable habitat, implying limited dispersal of devils between the well-connected, eastern populations and a smaller northwestern population. The genetic distinctiveness of the northwestern population was reflected in all analyses: unique alleles; multivariate analyses of gene frequency (multidimensional scaling, minimum spanning tree, nearest neighbour); high self-assignment (95%); two distinct populations for Tasmania were detected in isolation by distance and in Bayesian model-based clustering analyses. Marsupial carnivores appear to have stronger population subdivisions than their placental counterparts.
Resumo:
CCR5 plays a key role in the distribution of CD45RO+ T cells and contributes to generation of a T helper 1 immune response. CCR5-Delta32 is a 32-bp deletion associated with significant reduction in cell surface expression of the receptor. We investigated the role of CCR5-Delta32 on susceptibility to ulcerative colitis (UC), Crohn's disease ( CD) and primary sclerosing cholangitis (PSC). Genotype and allelic association analyses were performed in 162 patients with UC, 131 with CD, 71 with PSC and 419 matched controls. There was a significant difference in CCR5 genotype (OR 2.27, P = 0.003) between patients with sclerosing cholangitis and controls. Similarly, CCR5-Delta32 allele frequency was significantly higher in sclerosing cholangitis (17.6%) compared to controls (9.9%, OR 2.47, P = 0.007) and inflammatory bowel disease patients without sclerosing cholangitis ( 11.3%, OR 1.9, P = 0.027). There were no significant differences in CCR5 genotype or allele frequency between those with either UC or CD and controls. Genotypes with the CCR5-Delta32 variant were increased in patients with severe liver disease defined by portal hypertension and/or transplantation (45%) compared to those with mild liver disease (21%, OR 3.17, P = 0.03). The CCR5-Delta32 mutation may influence disease susceptibility and severity in patients with PSC.
Resumo:
The plant hormones abscisic acid (ABA), jasmonic acid (JA), and ethylene are involved in diverse plant processes, including the regulation of gene expression during adaptive responses to abiotic and biotic stresses. Previously, ABA has been implicated in enhancing disease susceptibility in various plant species, but currently very little is known about the molecular mechanisms underlying this phenomenon. In this study, we obtained evidence that a complex interplay between ABA and JA-ethylene signaling pathways regulate plant defense gene expression and disease resistance. First, we showed that exogenous ABA suppressed both basal and JA-ethylene-activated transcription from defense genes. By contrast, ABA deficiency as conditioned by the mutations in the ABA1 and ABA2 genes, which encode enzymes involved in ABA biosynthesis, resulted in upregulation of basal and induced transcription from JA-ethylene responsive defense genes. Second, we found that disruption of AtMYC2 (allelic to JASMONATE INSENSITIVE1 [JIN1]), encoding a basic helix-loop-helix Leu zipper transcription factor, which is a positive regulator of ABA signaling, results in elevated levels of basal and activated transcription from JA-ethylene responsive defense genes. Furthermore, the jin1/myc2 and aba2-1 mutants showed increased resistance to the necrotrophic fungal pathogen Fusarium oxysporum. Finally, using ethylene and ABA signaling mutants, we showed that interaction between ABA and ethylene signaling is mutually antagonistic in vegetative tissues. Collectively, our results indicate that the antagonistic interactions between multiple components of ABA and the JA-ethylene signaling pathways modulate defense and stress responsive gene expression in response to biotic and abiotic stresses.
Resumo:
Seventy sorghum inbred lines which formed part of the Queensland Department of Primary Industries (QDPI) sorghum breeding program were screened with 104 previously mapped RFLP markers. The lines were related by pedigree and consisted of ancestral source lines, intermediate lines and recent releases from the program. We compared the effect of defining marker alleles using either identity by state (IBS) or identity by descent (IBD) on our capacity to trace markers through the pedigree and detect evidence of selection for particular alleles. Allelic identities defined using IBD were much more sensitive for detecting non-Mendelian segregation in this pedigree. Only one marker allele showed significant evidence of selection when IBS was used compared with ten regions with particular allelic identities when IBD was used. Regions under selection were compared with the location of QTLs for agronomic traits known to be under selection in the breeding program. Only two of the ten regions were associated with known QTLs that matched with knowledge of the agronomic characteristics of the ancestral lines. Some of the other regions were hypothesised to be associated with genes for particular traits based on the properties of the ancestral source lines.
Resumo:
Various marker systems exist for genetic analysis of horticultural species. Isozymes were first applied to the woody perennial nut crop, macadamia, in the early 1990s. The advent of DNA markers saw the development, for macadamia, of STMS (sequence-tagged microsatellite site), RAPD (randomly amplified polymorphic DNA), and RAF (randomly amplified DNA fingerprinting). The RAF technique typically generates dominant markers, but within the dominant marker profiles, certain primers also amplify multi-allelic co-dominant markers that are suspected to be microsatellites. In this paper, we confirm this for one such marker, and describe how RAF primers can be chosen that amplify one or more putative microsatellites. This approach of genotyping anonymous microsatellite markers via RAF is designated RAMiFi (randomly amplified microsatellite fingerprinting). Several marker systems were compared for the type, amount, and cost-efficiency of the information generated, using data from published studies on macadamia. The markers were also compared for the way they clustered a common set of accessions. The RAMiFi approach was identified as the most efficient and economical. The availability of such a versatile tool offers many advantages for the genetic characterisation of horticultural species.
Resumo:
The hypothesis of the existence of one or more schizophrenia susceptibility loci on chromosome 22q is supported by reports of genetic linkage and association, meta-analyses of linkage, and the observation of elevated risk for psychosis in people with velocardiofacial syndrome, caused by 22q11 microdeletions. We tested this hypothesis by evaluating 10 microsatellite markers spanning 22q in a multicenter sample of 779 pedigrees. We also incorporated age at onset and sex into the analysis as covariates. No significant evidence for linkage to schizophrenia or for linkage associated with earlier age at onset, gender, or heterogeneity across sites was observed. We interpret these findings to mean that the population-wide effects of putative 22q schizophrenia susceptibility loci are too weak to detect with linkage analysis even in large samples.
Resumo:
The development of resistance to sulfadoxine-pyrimethamine by Plasmodium parasites is a major problem for the effective treatment of malaria, especially P. falciparum malaria. Although the molecular basis for parasite resistance is known, the factors promoting the development and transmission of these resistant parasites are less clear. This paper reports the results of a quantitative comparison of factors previously hypothesized as important for the development of drug resistance, drug dosage, time of treatment, and drug elimination half-life, with an in-host dynamics model of P. falciparum malaria in a malaria-naive host. The results indicate that the development of drug resistance can be categorized into three stages. The first is the selection of existing parasites with genetic mutations in the dihydrofolate reductase or dihydropteroate synthetase gene. This selection is driven by the long half-life of the sulfadoxine-pyrimethamine combination. The second stage involves the selection of parasites with allelic types of higher resistance within the host during an infection. The timing of treatment relative to initiation of a specific anti-P. falciparum EMP1 immune response is an important factor during this stage, as is the treatment dosage. During the third stage, clinical treatment failure becomes prevalent as the parasites develop sufficient resistance mutations to survive therapeutic doses of the drug combination. Therefore, the model output reaffirms the importance of correct treatment of confirmed malaria cases in slowing the development of parasite resistance to sulfadoxine-pyrimethamine.