72 resultados para all-solid-state
Resumo:
Focussing particularly on solid-state laser systems, the phase-noise penalties of laser injection-locking and electro-optical phase-locking are derived using linearised quantum mechanical models. The fundamental performance limit (minimum achievable output phase noise) for an injection-locked laser (IJL) system at low frequencies is equal to that of a standard phase-insensitive amplifier, whereas, in principle, that of a phase-locked laser (PLL) system can be better. At high frequencies, the output phase noise of the IJL system is limited by that of the master laser, while that of the PLL system tends to a weighted sum of contributions from the master and slave laser fields. Under conditions of large amplification, particularly where there has been significant attenuation, the noise penalties are shown to be substantial. Nonideal photodetector characteristics are shown to add significantly to the noise penalties for the PLL system. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
New organometallic tin(IV) complexes of the empirical formula Sn(NNS)Ph2Cl (NNS = anionic forms of the 2-quinolinecarboxaldehyde Schiff bases of S-methyl- and S-benzyldithiocarbazate) have been prepared and characterized by IR, electronic, I H NMR and ES mass spectroscopic techniques. The molecular structures of the 2-quinolinecarboxaldehyde Schiff base of S-methyldithiocarbazate (Hqaldsme) and its diphenyltin(IV) complex, Sn(qaldsme)Ph2Cl, have been determined by X-ray diffraction. In the solid state, the ligand remains as the thione tautomer in which the dithiocarbazate chain adopts an E,E configuration and is almost coplanar with the quinoline ring. The Sn(qaldsme)Ph2Cl complex crystallizes in two distinctly different conformationally isomeric forms, each having the same space group but different lattice parameters. X-ray analysis shows that in each polymorph, the tin atom adopts a distorted octahedral geometry with the Schiff base coordinated to it as a uninegatively charged tridentate chelating agent via the quinoline nitrogen atom, the azomethine nitrogen atom and the thiolate sulfur atom. The two phenyl groups occupy axial positions and the chloride ligand occupies the sixth coordination position of the tin atom. The deprotonated ligand adopts an E,E,Z configuration in the complex. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Free-standing melanin films were successfully synthesised electrochemically from dopa. The Optimum synthetic conditions such as pH, concentration and current were determined, and it was found that free-standing film,.; could only be formed when ITO glass electrodes were used. The films were analysed by solid state NMR and XPS which showed the presence of indolic moieties characteristic of melanin-type macromolecules. The film showed higher conductivity than chemically synthesised melanin previously reported in literature and also exhibited photoconductivity. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Understanding the interlayer swelling and molecular packing in organoclays is important to the formation and design of polymer nanocomposites. This paper presents recent experimental and molecular simulation studies on a variety of organoclays that show a linear relationship between the increase of d-spacing and the mass ratio between organic and clay. A denser molecular packing is observed in organoclays containing surfactants with hydroxyl-ethyl units. Moreover, our simulation results show that the head (nitrogen) groups are essentially tethered to the clay surface while the long hydrocarbon chains tend to adopt a layering structure with disordered conformation, which contrasts with the previous assumptions of either the chains lying parallel to the clay surface or being tilted at rather precise angles. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Nanocrystalline zirconia was synthesized and used as catalyst support for methanol synthesis. The nanocrystallite particles have new physical and textural properties which are critical in determining the catalytic performance. Nanocrystalline zirconia changes the electronic structure and affects the metal and support interactions on the catalyst. leading to facile reduction. intimate interaction between copper and zirconia, more corner defects and oxygen vacancies on the surface of the catalyst. All these changes are beneficial to the reaction of methanol synthesis from hydrogenation of CO2. As a result. higher conversion of CO2 and selectivity of methanol are achieved compared to the catalysts prepared by conventional co-precipitation method. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Adsorbents from coal fly ash treated by a solid-state fusion method using NaOH were prepared. It was found that amorphous aluminosilicate, geopolymers would be formed. These fly ash-derived inorganic polymers were assessed as potential adsorbents for removal of some basic dyes, methylene blue and crystal violet, from aqueous solution. It was found that the adsorption capacity of the synthesised adsorbents depends on the preparation conditions such as NaOH:fly-ash ratio and fusion temperature with the optimal conditions being at 121 weight ratio of Na:fly-ash at 250-350 degrees C. The synthesised materials exhibit much higher adsorption capacity than fly ash itself and natural zeolite. The adsorption isotherm can be fitted by Langmuir and Freundlich models while the two-site Langmuir model producing the best results. It was also found that the fly ash derived geopolymeric adsorbents show higher adsorption capacity for crystal violet than methylene blue and the adsorption temperature influences the adsorption capacity. Kinetic studies show that the adsorption process follows the pseudo second-order kinetics. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Microtome sections of proton exchange membrane cells produce a wide range of information ranging from macroscopic distribution of components through specimens in which the detailed distribution of catalyst particles can be observed. Using modern data management practices it is possible to combine information at different scales and correlate processing and performance data. Analytical electron microscopy reveals the compositional variations across used cells at the electrolyte/electrode interface. In particular analytical techniques indicate that sulphur concentrations are likely to diminish at the interface Nafion/anode interface. © 2006 Elsevier B.V. All rights reserved.
Resumo:
The gamma-radiolysis of poly(tetrafluoroethylene-co-perfuoromethyl vinyl ether) (TFE/PMVE) was investigated using solid state F-19 and C-13 NMR spectroscopy. Chain scission products identified in the polymer were saturated chain ends -CF2CF3 (G = 1.0), methyl ether end groups -CF2OCF3 (G = 0.9), acid end groups -CF2COOH (G = 0.5), and a small amount of terminal unsaturation -CF=CF2 (G = 0.2). A mechanism for the formation of these scission products was proposed and the G value for main chain scission, G(S), was determined to be 1.4. Cross-linking of TFE/PMVE was found to proceed via a Y-linking mechanism. The G value for cross-linking, G(X), was determined to be 0.9. A maximum of 0.2 mol % cross-links were formed under the experimental conditions.
Resumo:
Fungal growth in time and space at the substrate surface was modelled for a simple system mimicking solid-state fermentation, using a polycarbonate Nucleopore membrane laid over a glucose solution. Biomass production depends on both tip density and the diffusion of glucose within the fungal hyphae. The model predicts early increases in both height and concentration, followed by a period in which the biomass profile moves with a constant wavefront. The rate of increase in height increases as tip diffusivity increases or as the Monod saturation constant for glucose decreases.
Resumo:
The complexes [Fe([9]aneN(2)S)(2)][ClO4](2), [Fe([9]aneN(2)S)(2)][ClO4](3) and [Fe([9]aneNS(2))(2)][ClO4](2) ([9]aneN(2)S = 1-thia-4. 7-diazacyclononane and [9]aneNS(2) = 1,4-dithia-7-azacyclononane) have been prepared and the latter two characterised by X-ray crystallography. The Mossbauer spectra (isomer shift/mm s(-1), quadrupole splitting/mm s(-1), 4.2 K) for [Fe([9]aneN(2)S)(2)][ClO4](2) (0.52, 0.57), [Fe([9]aneN(2)S)(2)][ClO4](3) (0.25, 2.72) and [Fe([9]aneNS(2))(2)][ClO4](2) (0.43, 0.28) are typical for iron(II) and iron(III) complexes. Variable-temperature susceptibility measurements for [Fe([9]aneN(2)S)(2)][ClO4](2) (2-300 K) revealed temperature-dependent behaviour in both the solid state [2.95 mu(B) (300 K)-0.5 mu(B) (4.2 K)] and solution (Delta H degrees 20-22 kJ mol(-1), Delta S degrees 53-60 J mol(-1) K-1). For [Fe([9]aneN(2)S)(2)][ClO4](3) in the solid state [2.3 mu(B) (300 K)-1.9 mu(B) (4.2 K)] the magnetic data were fit to a simple model (H = -lambda L . S + mu L-z) to give the spin-orbit coupling constant (lambda) of -260 +/- 10 cm(-1). The solid-state X-band EPR spectrum of [Fe([9]aneN(2)S)(2)][ClO4](3) revealed axial symmetry (g(perpendicular to) = 2.607, g(parallel to) = 1.599). Resolution of g(perpendicular to) into two components at Q-band frequencies indicated a rhombic distortion. The low-temperature single-crystal absorption spectra of [Fe([9]aneN(2)S)(2)][ClO4](2) and [Fe([9]aneNS(2))(2)][ClO4](2) exhibited additional bands which resembled pseudotetragonal low-symmetry splitting of the parent octahedral (1)A(1g) --> T-1(2g) and (1)A(1g) ---> T-1(1g) transitions. However, the magnitude of these splittings was too large, requiring 10Dq for the thioether donors to be significantly larger than for the amine donors. Instead, these bands were tentatively assigned to weak, low-energy S --> Fe-II charge-transfer transitions. Above 200 K, thermal occupation of the high-spin T-5(2g) ground state resulted in observation of the T-5(2g) --> E-5(g) transition in the crystal spectrum of [Fe([9]aneN(2)S)(2)][ClO4](2). From a temperature-dependence study, the separation of the low-spin (1)A(1g) and high-spin T-5(2g) ground states was approximately 1700 cm(-1). The spectrum of the iron(III) complex [Fe([9]aneN(2)S)(2)][ClO4](3) is consistent with a low-spin d(5) configuration.
Resumo:
The macrocyclic compounds (6-(4',6'-diamino-1',3',5'-triazinyl)-1,4,6,8,11-pentaazacyclotetradecane)copper(II) triperchlorate dihydrate, [Cu(HL2)](ClO4)(3). 2H(2)O, (6-(6'-amino-4'-oxo-1'H-1',3',5'-triazinyl)-1,4,6,8,11-pentaazacyclotetradecane)copper(II) diperchlorate hydrate, [CuL3](ClO4)(2). H2O, and [(6-(4',6'-dioxo-1'H-1',3',5'-triazinyl) 1,4,6,8,11-pentaazacyclotetradecane)copper(II)] diperchlorate, [CuL4](ClO4)(2), have been synthesized. The macrocycles synthesized contain respectively pendant melamine, ammeline,and ammelide rings. The X-ray cyrstallographic analyses of [Cu(HL2)](ClO4)(3). 2H(2)O, triclinic, space group P (1) over bar, a = 9.489(10) Angstrom, b = 12.340(2) Angstrom, c = 24.496(4) Angstrom, alpha = 87.74(10)degrees beta = 85.51(10)degrees gamma = 70.95(10)degrees and Z = 4, and {[CuL3](ClO4)(2). H2O}2, monoclinic, space group C2/c, a = 18.624(8) Angstrom, b = 17.160(2) Angstrom, c = 15.998(6) Angstrom, beta = 117.82(2)degrees, and Z = 4, are reported. The structure of [Cu(HL2)](ClO4)(3). 2H(2)O shows the formation of linear tapes, formed by a combination of hydrogen bonds and pi-pi stacking interactions. The structure of [CuL3](ClO4)(2). H2O displays formation of dimers, formed by a coordinate bond from the oxygen in one molecule to the copper atom of another. The tautomeric forms of the ammeline and ammelide moieties have been determined. The potential of these compounds as subunits for cocrystallization has been investigated.
Resumo:
A new cyclic octapeptide, cyclo(Ile-Ser-(Gly)Thz-Ile-Thr-(Gly)Thz) (PatN), related to patellamide A, has been synthesized and reacted with copper(II) and base to form mono- and dinuclear complexes. The coordination environments around copper(TI) have been characterized by EPR spectroscopy. The solution structure of the thermodynamically most stable product, a purple dicopper(TI) compound, has been examined by simulating weakly dipole-dipole coupled EPR spectra based upon structural parameters obtained from force field (MM and MD) calculations. The MM-EPR method produces a saddle-shaped structure for [Cu-2(PatN)(OH2)(6)] that is similar to the known solution structure of patellamide A and the known solid-state structure of [Cu-2(AscidH(2))CO3(OH2)(2)]. Compared with the latter, [Cu-2(PatN)] has no carbonate bridge and a significantly flatter topology. The MM-EPR approach to solution-structure determination for paramagnetic metallopeptides may find wide applications to other metallopeptides and metalloproteins.
Resumo:
The effect of trace additions of magnesium on the sintering of aluminum and its alloys is examined. Magnesium, especially at low concentrations, has a disproportionate effect on sintering because it disrupts the passivating Al2O3 layer through the formation of a spinel phase. Magnesium penetrates the sintering compact by solid-state diffusion, and the oxide is reduced at the metal-oxide interface. This facilitates solid-state sintering, as well as wetting of the underlying metal by sintering liquids, when these are present. The optimum magnesium concentration is approximately 0.1 to 1.0 wt pet, but this is dependent on the volume of oxide and, hence, the particle size, as well as the sintering conditions. Small particle-size fractions require proportionally more magnesium than large-size fractions do.
Resumo:
The properties of the hydrogen-bonded polymer blends of poly(4-vinylphenol) and poly(2-ethoxyethyl methacrylate) are presented. Spectroscopic techniques such as C-13 solid-state NMR and FT-IR are used to probe specific interactions of the blends at various compositions. Spectral features from both techniques revealed that site-specific interactions are present, consistent with a significant degree of mixing of the blend components. Changes in chemical shift and line shape of the phenolic carbon and carbonyl resonances in the C-13 CPMAS spectra of the blends as a function of composition are interpreted as resulting from changes in the relative intensities of two closely overlapped signals. A quantitative measure of hydrogen-bonded carbonyl groups using C-13 NMR has been obtained which agreed well with the results from FT-IR analyses. It is also shown that C-13 NMR can be used to measure the fraction of hydroxyl groups associated with carbonyl groups, which was not possible previously using FT-IR due to extensive overlapping of bands in the hydroxyl stretching region. The results of measurements of H-1 T-1 and 1H T-1 rho indicate that PVPh and PEEMA are intimately mixed on a scale less than 2-3 nm.