52 resultados para acetylcholine release
Resumo:
Both purinergic stimulation and activation of cystic fibrosis transmembrane conductance regulator (CFTR) increases Cl- secretion and inhibit amiloride-sensitive Na+ transport. CFTR has been suggested to conduct adenosine 5'-triphosphate (ATP) or to control ATP release to the luminal side of epithelial tissues. Therefore, a possible mechanism on how CFTR controls the activity of epithelial Na+ channels (ENaC) could be by release of ATP or uridine 5'-triphosphate (UTP), which would then bind to P2Y receptors and inhibit ENaC. We examined this question in native tissues from airways and colon and in Xenopus oocytes. Inhibition of amiloride-sensitive transport by both CFTR and extracellular nucleotides was observed in colon and trachea. However, nucleotides did not inhibit ENaC in Xenopus oocytes, even after coexpression of P2Y(2) receptors. Using different tools such as hexokinase, the P2Y inhibitor suramin or the Cl- channel blocker 4,4'diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), we did not detect any role of a putative ATP secretion in activation of Cl- transport or inhibition of amiloride sensitive short circuit currents by CFTR. In addition, N-2,2'-O-dibutyrylguanosine 3',5-cyclic monophosphate (cGMP) and protein kinase G (PKG)-dependent phosphorylation or the nucleoside diphosphate kinase (NDPK) do not seem to play a role for the inhibition of ENaC by CFTR, which, however, requires the presence of extracellular Cl-. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Although the co-ordination of promotive root-sourced cytokinin (CK) and inhibitory shoot apex-sourced auxin (IAA) is central to all current models on lateral bud dormancy release, control by those hormones alone has appeared inadequate in many studies. Thus it was hypothesized that the IAA : CK model is the central control but that it must be considered within the relevant timeframe leading to lateral bud release and against a backdrop of interactions with other hormone groups. Therefore, IAA and a wide survey of cytokinins (CKs), were examined along with abscisic acid (ABA) and polyamines (PAs) in released buds, tissue surrounding buds and xylem sap at 1 and 4 h after apex removal, when lateral buds of chickpea are known to break dormancy. Three potential lateral bud growth inhibitors, IAA, ABA and cis-zeatin 9-riboside (ZR), declined sharply in the released buds and xylem following decapitation. This is in contrast to potential dormancy breaking CKs like trans-ZR and trans-zeantin 9-riboside 5'phosphate (ZRMP), which represented the strongest correlative changes by increasing 3.5-fold in xylem sap and 22-fold in buds. PAs had not changed significantly in buds or other tissues after 4 h, so they were not directly involved in the breaking of bud dormancy. Results from the xylem and surrounding tissues indicated that bud CK increases resulted from a combination synthesis in the bud and selective loading of CK nucleotides into the xylem from the root.
Resumo:
Although cytokinins (CKs) are widely thought to have a role in promoting shoot branching, there is little data supporting a causative or even a correlative relationship between endogenous CKs and timing of bud outgrowth. We previously showed that lateral bud CK content increased rapidly following shoot decapitation. However, it is not known whether roots are the source of this CK. Here, we have used shoot decapitation to instantaneously induce lateral bud release in chickpea seedlings. This treatment rapidly alters rate and direction of solvent and solute (including CK) trafficking, which may be a passive signalling mechanism central to initiation of lateral bud release. To evaluate changes in xylem transport, intact and decapitated plants were infiltrated with [H-3]zeatin riboside ([H-3]ZR), a water-soluble blue dye or [H-3]H2O by injection into the hypocotyl. All three tracers were recovered in virtually all parts of the shoot within I h of injection. In intact plants, solute accumulation in the lateral bud at node 1 was significantly less than in the adjacent stipule and nodal tissue. In decapitated plants, accumulation of [H-3]ZR and of blue dye in the same bud position was increased 3- to 10-fold relative to intact plants, whereas content of [H-3]H2O was greatly reduced indicating an increased solvent throughput. The stipule and cut stem, predicted to have high evapotranspiration rates, also showed increased solute content accompanied by enhanced depletion of [H-3]H2O. To assess whether metabolism modifies quantities of active CK reaching the buds, we followed the metabolic fate of [H-3]ZR injected at physiological concentrations. Within 1 h, 80-95% of [H-3]ZR was converted to other active CKs (mainly zeatin riboside-5'phosphate (ZRMP) and zeatin (Z)), other significant, but unconfirmed metabolites some of which may be active (O-acetylZR, O-acetylZRMP and a compound correlated with sites of high CK-concentrations) and inactive catabolites (adenosine, adenine, 5'AMP and water). Despite rapid metabolic degradation, the total active label, which was indicative of CK concentration in buds, increased rapidly following decapitation. It can be inferred that xylem sap CKs represent one source of active CKs appearing in lateral buds after shoot decapitation.
Resumo:
Cervical auscultation presents as a noninvasive screening assessment of swallowing. Until now the focus of acoustic research in swallowing has been the characterization of swallowing sounds,. However, it may be that the technique is also suitable for the detection of respiratory sounds post swallow. A healthy relationship between swallowing and respiration is widely accepted as pivotal to safe swallowing. Previous investigators have shown that the expiratory phase of respiration commonly occurs prior to and after swallowing. That the larynx is valved shut during swallowing is also accepted. Previous research indicates that the larynx releases valved air immediately post swallow in healthy individuals. The current investigation sought to explore acoustic evidence of a release of subglottic air post swallow in nondysphagic individuals using a noninvasive medium. Fifty-nine healthy individuals spanning the ages of 18 to 60+ years swallowed 5 and 10 milliliters (ml) of thin and thick liquid boluses. Objective acoustic analysis was used to verify presence of the sound and to characterize its morphological features. The sound, dubbed the glottal release sound, was found to consistently occur in close proximity following the swallowing sound. The results indicated that the sound has distinct morphological features and that these change depending on the volume and viscosity of the bolus swallowed. Further research will be required to translate this information to a clinical tool.
Resumo:
The effects of the native alpha-conotoxin PnIA, its synthetic derivative [ A10L] PnIA and alanine scan derivatives of [ A10L] PnIA were investigated on chick wild type alpha7 and alpha7-L247T mutant nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus oocytes. PnIA and [A10L] PnIA inhibited acetylcholine (ACh)-activated currents at wtalpha7 receptors with IC50 values of 349 and 168 nM, respectively. Rates of onset of inhibition were similar for PnIA and [ A10L] PnIA; however, the rate of recovery was slower for [ A10L] PnIA, indicating that the increased potency of [ A10L] PnIA at alpha7 receptors is conveyed by its slower rate of dissociation from the receptors. All the alanine mutants of [ A10L] PnIA inhibited ACh-activated currents at wtalpha7 receptors. Insertion of an alanine residue between position 5 and 13 and at position 15 significantly reduced the ability of [ A10L] PnIA to inhibit ACh-evoked currents. PnIA inhibited the non-desensitizing ACh-activated currents at alpha7-L247T receptors with an IC50 194 nM. In contrast, [ A10L] PnIA and the alanine mutants potentiated the ACh-activated current alpha7-L247T receptors and in addition [ A10L] PnIA acted as an agonist. PnIA stabilized the receptor in a state that is non-conducting in both the wild type and mutant receptors, whereas [ A10L] PnIA stabilized a state that is non-conducting in the wild type receptor and conducting in the alpha7-L247T mutant. These data indicate that the change of a single amino acid side-chain, at position 10, is sufficient to change the toxin specificity for receptor states in the alpha7-L247T mutant.
Resumo:
The origin of intracellular Ca2+ concentration ([Ca2+](i)) transients stimulated by nicotinic ( nAChR) and muscarinic ( mAChR) receptor activation was investigated in fura-2-loaded neonatal rat intracardiac neurons. ACh evoked [Ca2+](i) increases that were reduced to similar to 60% of control in the presence of either atropine ( 1 muM) or mecamylamine ( 3 muM) and to < 20% in the presence of both antagonists. Removal of external Ca2+ reduced ACh-induced responses to 58% of control, which was unchanged in the presence of mecamylamine but reduced to 5% of control by atropine. The nAChR-induced [Ca2+](i) response was reduced to 50% by 10 μM ryanodine, whereas the mAChR-induced response was unaffected by ryanodine, suggesting that Ca2+ release from ryanodine-sensitive Ca2+ stores may only contribute to the nAChR-induced [Ca2+](i) responses. Perforated-patch whole cell recording at - 60 mV shows that the rise in [Ca2+](i) is concomitant with slow outward currents on mAChR activation and with rapid inward currents after nAChR activation. In conclusion, different signaling pathways mediate the rise in [Ca2+](i) and membrane currents evoked by ACh binding to nicotinic and muscarinic receptors in rat intracardiac neurons.
Resumo:
The light-evoked release of acetylcholine (ACh) affects the responses of many retinal ganglion cells, in part via nicotinic acetylcholine receptors (nAChRs). nAChRs that contain beta2alpha3 neuronal nicotinic acetylcholine receptors have been identified and localized in the rabbit retina; these nAChRs are recognized by the monoclonal antibody mAb210. We have examined the expression of beta2alpha3 nAChRs by glycinergic amacrine cells in the rabbit retina and have identified different subpopulations of nicotinic cholinoceptive glycinergic cells using double and triple immunohistochemistry with quantitative analysis. Here we demonstrate that about 70% of the cholinoceptive amacrine cells in rabbit retina are glycinergic cells. At least three nonoverlapping subpopulations of mAb210 glycine-immunoreactive cells can be distinguished with antibodies against calretinin, calbindin, and gamma-aminobutyric acid (GABA)(A) receptors. The cholinergic cells in rabbit retina are thought to synapse only on other cholinergic cells and ganglion cells. Thus, the expression of beta2alpha3 nAChRs on diverse populations of glycinergic cells is puzzling. To explore this finding, the subcellular localization of beta2alpha3 was studied at the electron microscopic level. mAb210 immunoreactivity was localized on the dendrites of amacrines and ganglion cells throughout the inner plexiform layer, and much of the labeling was not associated with recognizable synapses. Thus, our findings indicate that ACh in the mammalian retina may modulate glycinergic circuits via extrasynaptic beta2alpha3 nAChRs. (C) 2002 Wiley-Liss, Inc.