71 resultados para Visual abilities
Resumo:
The basal dendritic arbors of over 500-layer III pyramidal neurones of the macaque cortex were compared by fractal analyses, which provides a measure of the space filling (or branching pattern) of dendritic arbors. Fractal values (D) of individual cells were compared between the cytochrome oxidase (CO)-rich blobs and CO-poor interblobs, of middle and upper layer III, and between sublaminae, in the primary visual area (Vi). These data were compared with those in the CO compartments in the second visual area (V2), and seven other extrastriate cortical areas. (V4, MT, LIP, 7a, TEO, TE and STP). There were significant differences in the fractal dimensions, and therefore the dendritic branching patterns, of cells in striate and extrastriate areas. Of the 55 possible pairwise comparisons of fractal dimension of neurones in different cortical areas (or CO compartments), 39 proved to be significantly different. The markedly different morphologies of pyramidal cells in the different cortical areas may be one of the features that determine the functional signatures of these cells by influencing the number of inputs received by, and propagation of potentials through, their dendritic arbors.
Resumo:
There is overwhelming evidence for the existence of substantial genetic influences on individual differences in general and specific cognitive abilities, especially in adults. The actual localization and identification of genes underlying variation in cognitive abilities and intelligence has only just started, however. Successes are currently limited to neurological mutations with rather severe cognitive effects. The current approaches to trace genes responsible for variation in the normal ranges of cognitive ability consist of large scale linkage and association studies. These are hampered by the usual problems of low statistical power to detect quantitative trait loci (QTLs) of small effect. One strategy to boost the power of genomic searches is to employ endophenotypes of cognition derived from the booming field of cognitive neuroscience This special issue of Behavior Genetics reports on one of the first genome-wide association studies for general IQ. A second paper summarizes candidate genes for cognition, based on animal studies. A series of papers then introduces two additional levels of analysis in the ldquoblack boxrdquo between genes and cognitive ability: (1) behavioral measures of information-processing speed (inspection time, reaction time, rapid naming) and working memory capacity (performance on on single or dual tasks of verbal and spatio-visual working memory), and (2) electrophyiosological derived measures of brain function (e.g., event-related potentials). The obvious way to assess the reliability and validity of these endophenotypes and their usefulness in the search for cognitive ability genes is through the examination of their genetic architecture in twin family studies. Papers in this special issue show that much of the association between intelligence and speed-of-information processing/brain function is due to a common gene or set of genes, and thereby demonstrate the usefulness of considering these measures in gene-hunting studies for IQ.
Resumo:
We assessed the effectiveness of two generalized visual training programmes in enhancing visual and motor performance for racquet sports. Forty young participants were assigned equally to groups undertaking visual training using Revien and Gabor's Sports Vision programme (Group 1), visual training using Revien's Eyerobics (Group 2), a placebo condition involving reading (Group 3) and a control condition involving physical practice only (Group 4). Measures of basic visual function and of sport-specific motor performance were obtained from all participants before and immediately after a 4-week training period. Significant pre- to post-training differences were evident on some of the measures; however, these were not group-dependent. Contrary to the claims made by proponents of generalized visual training, we found no evidence that the visual training programmes led to improvements in either vision or motor performance above and beyond those resulting simply from test familiarity.
Resumo:
In addressing the scientific study of consciousness, Crick and Koch state, "It is probable that at any moment some active neuronal processes in your head correlate with consciousness, while others do not: what is the difference between them?" (1998, p. 97). Evidence from electrophysiological and brain-imaging studies of binocular rivalry supports the premise of this statement and answers to some extent, the question posed. I discuss these recent developments and outline the rationale and experimental evidence for the interhemispheric switch hypothesis of perceptual rivalry. According to this model, the perceptual alternations of rivalry reflect hemispheric alternations, suggesting that visual consciousness of rivalling stimuli may be unihemispheric at any one time (Miller et al., 2000). However, in this paper, I suggest that interhemispheric switching could involve alternating unihemispheric attentional selection of neuronal processes for access to visual consciousness. On this view, visual consciousness during rivalry could be bihemispheric because the processes constitutive of attentional selection may be distinct from those constitutive of visual consciousness. This is a special case of the important distinction between the neuronal correlates and constitution of visual consciousness.
Resumo:
Most Internet search engines are keyword-based. They are not efficient for the queries where geographical location is important, such as finding hotels within an area or close to a place of interest. A natural interface for spatial searching is a map, which can be used not only to display locations of search results but also to assist forming search conditions. A map-based search engine requires a well-designed visual interface that is intuitive to use yet flexible and expressive enough to support various types of spatial queries as well as aspatial queries. Similar to hyperlinks for text and images in an HTML page, spatial objects in a map should support hyperlinks. Such an interface needs to be scalable with the size of the geographical regions and the number of websites it covers. In spite of handling typically a very large amount of spatial data, a map-based search interface should meet the expectation of fast response time for interactive applications. In this paper we discuss general requirements and the design for a new map-based web search interface, focusing on integration with the WWW and visual spatial query interface. A number of current and future research issues are discussed, and a prototype for the University of Queensland is presented. (C) 2001 Published by Elsevier Science Ltd.
Resumo:
This case study represents four years of audiological observations, testing and aural habilitation of a female child with a partial agenesis of the corpus callosum (ACC). The ACC was diagnosed by MRI scans to eliminate neurological causes for developmental delay at six months of age. This child was also born with a cleft palate and was diagnosed with Robinow Syndrome at 3 years and 3 months of age. The audiological results showed an improvement in hearing thresholds over the four-year period. The child’s opthamologist also reported an improvement in visual skills over time. The most interesting aspect of the child’s hearing was the discrepancy between the monaural and the binaural results. That is, when assessed binaurally she often presented with a mild to moderate mixed loss and when assessed monaurally she showed a moderate to severe mixed loss for the right ear and a severe mixed loss for the left ear. This discrepancy between binaural and monaural results was evident for both aided and unaided tests. Parental reports of the child’s hearing were consistent with the binaural clinical results. This case indicates the need for audiologists to: (a) carefully monitor the hearing of children with ACC, (b) obtain monaural and binaural hearing and aided thresholds results, and (c) compare these children’s functional abilities to the objective test results obtained. This case does question whether hearing aids are appropriate for children with ACC. If hearing aids are deemed to be appropriate, then hearing aids with compression characteristics should be considered.
Resumo:
The human nervous system constructs a Euclidean representation of near (personal) space by combining multiple sources of information (cues). We investigated the cues used for the representation of personal space in a patient with visual form agnosia (DF). Our results indicated that DF relies predominantly on binocular vergence information when determining the distance of a target despite the presence of other (retinal) cues. Notably, DF was able to construct an Euclidean representation of personal space from vergence alone. This finding supports previous assertions that vergence provides the nervous system with veridical information for the construction of personal space. The results from the current study, together with those of others, suggest that: (i) the ventral stream is responsible for extracting depth and distance information from monocular retinal cues (i.e. from shading, texture, perspective) and (ii) the dorsal stream has access to binocular information (from horizontal image disparities and vergence). These results also indicate that DF was not able to use size information to gauge target distance, suggesting that intact temporal cortex is necessary for learned size to influence distance processing. Our findings further suggest that in neurologically intact humans, object information extracted in the ventral pathway is combined with the products of dorsal stream processing for guiding prehension. Finally, we studied the size-distance paradox in visual form agnosia in order to explore the cognitive use of size information. The results of this experiment were consistent with a previous suggestion that the paradox is a cognitive phenomenon.
Resumo:
This case study presents four and a half years of audiological observations, testing and aural habilitation of a female child with a partial agenesis of the corpus callosum (ACC). The ACC was diagnosed by MRI scan performed at 6 months of age to eliminate neurological causes for the developmental delay. This child was also born with a cleft palate and was diagnosed with Robinow Syndrome at 3 years and 3 months of age. The audiological results showed an improvement in hearing thresholds over the 4-year period. The child’s ophthalmologist also reported an improvement in visual skills over time. The most interesting aspect of the child’s hearing was the discrepancy between the monaural and the binaural results. That is, when assessed binaurally she often presented with a mild to moderate mixed loss and, when assessed monaurally, she showed a moderate to severe mixed loss for the right ear and a severe mixed loss for the left ear. Over time, the discrepancy between the monaural and binaural results changed. When assessed binaurally, the loss decreased to normal low frequency hearing sloping to a mild high frequency loss. When assessed monaurally, the most recent results showed a mild loss for the right ear and a moderate loss for the left ear. This discrepancy between binaural and monaural results was evident for both aided and unaided tests. For the most recent thresholds, the binaural results were consistent with the right monaural thresholds for the first time over the four and a half years. Parental reports of the child’s hearing were consistent with the binaural clinical results. This case indicates the need for audiologists to (1) carefully monitor the hearing of children with ACC, (2) obtain monaural and binaural hearing and aided thresholds results, and (3) compare these children’s functional abilities with the objective test results obtained. This case does question whether hearing aids are appropriate for children with ACC. If hearing aids are deemed to be appropriate, then hearing aids with compression characteristics should be considered.