66 resultados para Visual Cortex. Local Field Potential. Assemblies. Context stimuli


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three experiments explored the effectiveness of continuous auditory displays, or sonifications, for conveying information about a simulated anesthetized patient's respiration. Experiment 1 established an effective respiratory sonification. Experiment 2 showed an effect of expertise in the use of respiratory sonification and revealed that some apparent differences in sonification effectiveness could be accounted for by response bias. Experiment 3 showed that sonification helps anesthesiologists to maintain high levels of awareness of the simulated patient's state while performing other tasks more effectively than when relying upon visual monitoring of the simulated patient state. Overall, sonification of patient physiology beyond traditional pulse oximetry appears to be a viable and useful adjunct to visual monitors. Actual and potential applications of this research include monitoring in a wide variety of busy critical care contexts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we present evidence that the pyramidal cell phenotype varies markedly in the cortex of different anthropoid species. Regional and species differences in the size of, number of bifurcations in, and spine density of the basal dendritic arbors cannot be explained by brain size. Instead, pyramidal cell morphology appears to accord with the specialized cortical function these cells perform. Cells in the prefrontal cortex of humans are more branched and more spinous than those in the temporal and occipital lobes. Moreover, cells in the prefrontal cortex of humans are more branched and more spinous than those in the prefrontal cortex of macaque and marmoset monkeys. These results suggest that highly spinous, compartmentalized, pyramidal cells (and the circuits they form) are required to perform complex cortical functions such as comprehension, perception, and planning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pyramidal neurones were injected with Lucifer Yellow in slices cut tangential to the surface of area 7m and the superior temporal polysensory area (STP) of the macaque monkey. Comparison of the basal dendritic arbors of supra- and infragranular pyramidal neurones (n=139) that were injected in the same putative modules in the different cortical areas revealed variation in their structure. Moreover, there were relative differences in dendritic morphology of supra- and infragranular pyramidal neurones in the two cortical areas. Shell analyses revealed that layer III pyramidal neurones in area STP had considerably higher peak complexity (maximum number of dendritic intersections per Shell circle) than those in layer V, whereas peak complexities were similar for supra- and infragranular pyramidal neurones in area 7m. In both cortical areas, the basal dendritic trees of layer m pyramidal neurones were characterized by a higher spine density than those in layer V. Calculations of the total number of dendritic spines in the average basal dendritic arbor revealed that layer V pyramidal neurones in area 7m had twice as many spines as cells in layer III. (4535 and 2294, respectively). A similar calculation for neurones in area STP revealed that layer III pyramidal neurones had approximately the same number of spines as cells in layer V (3585 and 3850 spines, respectively). Relative differences in the branching patterns of, and the number of spines in, the basal dendritic arbors of supra- and infragranular pyramidal neurones in the different cortical areas may allow for integration of different numbers of inputs, and different degrees of dendritic processing. These results support the thesis that intra-areal circuitry differs in different cortical areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: This study examines human scalp electroencephalographic (EEG) data for evidence of non-linear interdependence between posterior channels. The spectral and phase properties of those epochs of EEG exhibiting non-linear interdependence are studied. Methods: Scalp EEG data was collected from 40 healthy subjects. A technique for the detection of non-linear interdependence was applied to 2.048 s segments of posterior bipolar electrode data. Amplitude-adjusted phase-randomized surrogate data was used to statistically determine which EEG epochs exhibited non-linear interdependence. Results: Statistically significant evidence of non-linear interactions were evident in 2.9% (eyes open) to 4.8% (eyes closed) of the epochs. In the eyes-open recordings, these epochs exhibited a peak in the spectral and cross-spectral density functions at about 10 Hz. Two types of EEG epochs are evident in the eyes-closed recordings; one type exhibits a peak in the spectral density and cross-spectrum at 8 Hz. The other type has increased spectral and cross-spectral power across faster frequencies. Epochs identified as exhibiting non-linear interdependence display a tendency towards phase interdependencies across and between a broad range of frequencies. Conclusions: Non-linear interdependence is detectable in a small number of multichannel EEG epochs, and makes a contribution to the alpha rhythm. Non-linear interdependence produces spatially distributed activity that exhibits phase synchronization between oscillations present at different frequencies. The possible physiological significance of these findings are discussed with reference to the dynamical properties of neural systems and the role of synchronous activity in the neocortex. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mental retardation in individuals with Down syndrome (DS) is thought to result from anomalous development and function of the brain; however, the underlying neuropathological processes have yet to be determined. Early implementation of special care programs result in limited, and temporary, cognitive improvements in DS individuals. In the present study, we investigated the possible neural correlates of these limited improvements. More specifically, we studied cortical pyramidal cells in the frontal cortex of Ts65Dn mice, a partial trisomy of murine chromosome 16 (MMU16) model characterized by cognitive deficits, hyperactivity, behavioral disruption and reduced attention levels similar to those observed in DS, and their control littermates. Animals were raised either in a standard or in an enriched environment. Environmental enrichment had a marked effect on pyramidal cell structure in control animals. Pyramidal cells in environmentally enriched control animals were significantly more branched and more spinous than non-enriched controls. However, environmental enrichment had little effect on pyramidal cell structure in Ts65Dn mice. As each dendritic spine receives at least one excitatory input, differences in the number of spines found in the dendritic arbors of pyramidal cells in the two groups reflect differences in the number of excitatory inputs they receive and, consequently, complexity in cortical circuitry. The present results suggest that behavioral deficits demonstrated in the Ts65Dn model could be attributed to abnormal circuit development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perceptual rivalry is an oscillation of conscious experience that takes place despite univarying, if ambiguous, sensory input. Much current interest is focused on the controversy over the neural site of binocular rivalry, a variety of perceptual rivalry for which a number of different cortical regions have been implicated. Debate continues over the relative role of higher levels of processing compared with primary visual cortex and the suggestion that different forms of rivalry involve different cortical areas. Here we show that the temporal pattern of disappearance and reappearance in motion-induced blindness (MIB) (Bonneh et al, 2001 Nature 411 798-801) is highly correlated with the pattern of oscillation reported during binocular rivalry in the same individual. This correlation holds over a wide range of inter-individual variation. Temporal similarity in the two phenomena was strikingly confirmed by the effects of the hallucinogen LSD, which produced the same, extraordinary, pattern of increased rhythmicity in both kinds of perceptual oscillation. Furthermore, MIB demonstrates the two properties previously considered characteristic of binocular rivalry. Namely the distribution of dominance periods can be approximated by a gamma distribution and, in line with Levelt's second proposition of binocular rivalry, predominance of one perceptual phase can be increased through a reduction in the predominance time of the opposing phase. We conclude that (i) MIB is a form of perceptual rivalry, and (ii) there may be a common oscillator responsible for timing aspects of all forms of perceptual rivalry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pyramidal neurons are covered with dendritic spines, the main postsynaptic targets of excitatory (asymmetrical) synapses. However, the proximal portion of both the apical and basal dendrites is devoid of spines, suggesting a lack of excitatory inputs to this region. In the present study we used electron microscopy to analyse the proximal region of the basal dendrites of supra- and infragranular pyramidal cells to determine if this is the case. The proximal region of 80 basal dendrites sampled from the rat hindlimb representation in the primary somatosensory cortex was studied by electron microscopy A total of 317 synapses were found within this region of the dendrites, all of which were of the symmetrical type. These results suggest that glutamate receptors, although present in the cytoplasm, are not involved in synaptic junctions in the proximal portion of the dendrites. These data further support the idea that inhibitory terminals exclusively innervate the proximal region of basal dendrites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently we have shown that growth hormone (GH) inhibits neuronal differentiation and that this process is blocked by suppressor of cytokine signalling-2 (SOCS2). Here we examine several cortical and subcortical neuronal populations in GH hyper-responsive SOCS2 null (-/-) mice and GH non-responsive GH receptor null (GHR-/-) mice. While SOCS2-/- mice showed a 30% decrease in density of NeuN positive neurons in cortex compared to wildtype, GHR-/- mice showed a 25% increase even though brain size was decreased. Interneuron sub-populations were variably affected, with a slight decrease in cortical parvalbumin expressing interneurons in SOCS2-/- mice and an increase in cortical calbindin and calretinin and striatal cholinergic neuron density in GHR-/- mice. Analysis of glial cell numbers in cresyl violet or glial fibrillary acidic protein (GFAP) stained sections of cortex showed that the neuron: glia ratio was increased in GHR-/- mice and decreased in SOCS2-/- mice. The astrocytes in GHR-/- mice appeared smaller, while they were larger in SOCS2-/- mice. Neuronal soma size also varied in the different genotypes, with smaller striatal cholinergic neurons in GHR-/- mice. While the size of layer 5 pyramidal neurons was not significantly different from wildtype, SOCS2-/- neurons were larger than GHR-/- neurons. In addition, primary dendritic length was similar in all genotypes but dendritic branching of pyramidal neurons in the cortex appeared sparser in GHR-/- and SOCS2-/- mice. These results suggest that GH, possibly regulated by SOCS2, has multiple effects on central nervous system (CNS) development and maturation, regulating the number and size of multiple neuronal and glial cell types.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gene encoding the dual-specificity tyrosine-regulated kinase DYRK1A maps to the chromosomal segment HSA21q22.2, which lies within the Down syndrome critical region. The reduction in brain size and behavioral defects observed in mice lacking one copy of the murine homologue Dyrk1A (Dyrk1A+/-) support the idea that this kinase may be involved in monosomy 21 associated mental retardation. However, the structural basis of these behavioral defects remains unclear. In the present work, we have analyzed the microstructure of cortical circuitry in the Dyrk1A+/- mouse and control littermates by intracellular injection of Lucifer Yellow in fixed cortical tissue. We found that labeled pyramidal cells were considerably smaller, less branched and less spinous in the cortex of Dyrk1A+/- mice than in control littermates. These results suggest that Dyrk1A influences the size and complexity of pyramidal cells, and thus their capability to integrate information. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dendritic spines of pyramidal cells are the main postsynaptic targets of cortical excitatory synapses and as such, they are fundamental both in neuronal plasticity and for the integration of excitatory inputs to pyramidal neurons. There is significant variation in the number and density of dendritic spines among pyramidal cells located in different cortical areas and species, especially in primates. This variation is believed to contribute to functional differences reported among cortical areas. In this study, we analyzed the density of dendritic spines in the motor, somatosensory and visuo-temporal regions of the mouse cerebral cortex. Over 17,000 individual spines on the basal dendrites of layer III pyramidal neurons were drawn and their morphologies compared among these cortical regions. In contrast to previous observations in primates, there was no significant difference in the density of spines along the dendrites of neurons in the mouse. However, systematic differences in spine dimensions (spine head size and spine neck length) were detected, whereby the largest spines were found in the motor region, followed by those in the somatosensory region and those in visuo-temporal region. (c) 2005 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The spatial character of our reaching movements is extremely sensitive to potential obstacles in the workspace. We recently found that this sensitivity was retained by most patients with left visual neglect when reaching between two objects, despite the fact that they tended to ignore the leftward object when asked to bisect the space between them. This raises the possibility that obstacle avoidance does not require a conscious awareness of the obstacle avoided. We have now tested this hypothesis in a patient with visual extinction following right temporoparietal damage. Extinction is an attentional disorder in which patients fail to report stimuli on the side of space opposite a brain lesion under conditions of bilateral stimulation. Our patient avoided obstacles during reaching, to exactly the same degree, regardless of whether he was able to report their presence. This implicit processing of object location, which may depend on spared superior parietal-lobe pathways, demonstrates that conscious awareness is not necessary for normal obstacle avoidance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study we report the results of two experiments on visual attention conducted with patients with early-onset schizophrenia. These experiments investigated the effect of irrelevant spatial-scale information upon the processing of relevant spatial-scale information, and the ability to shift the spatial scale of attention, across consecutive trials, between different levels of the hierarchical stimulus. Twelve patients with early-onset schizophrenia and matched controls performed local-global tasks under: (1) directed attention conditions with a consistency manipulation and (2) divided-attention conditions. In the directed-attention paradigm, the early-onset patients exhibited the normal patterns of global advantage and interference, and were not unduly affected by the consistency manipulation. Under divided-attention conditions, however, the early-onset patients exhibited a local-processing deficit. The source of this local processing deficit lay in the prolonged reaction time to local targets, when these had been preceded by a global target, but not when preceded by a local target. These findings suggest an impaired ability to shift the spatial scale of attention from a global to a local spatial scale in early-onset schizophrenia. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Activity within motor areas of the cortex begins to increase 1 to 2 s prior to voluntary self-initiated movement (termed the Bereitschaftspotential or readiness potential). There has been much speculation and debate over the precise source of this early premovement activity as it is important for understanding the roles of higher order motor areas in the preparation and readiness for voluntary movement. In this study, we use high-field (3-T) event-related fMRI with high temporal sampling (partial brain volumes every 250 ms) to specifically examine hemodynamic response time courses during the preparation, readiness, and execution of purely self-initiated voluntary movement. Five right-handed healthy volunteers performed a rapid sequential finger-to-thumb movement performed at self-determined times (12-15 trials). Functional images for each trial were temporally aligned and the averaged time series for each subject was iteratively correlated with a canonical hemodynamic response function progressively shifted in time. This analysis method identified areas of activation without constraining hemodynamic response timing. All subjects showed activation within frontal mesial areas, including supplementary motor area (SMA) and cingulate motor areas, as well as activation in left primary sensorimotor areas. The time courses of hemodynamic responses showed a great deal of variability in shape and timing between subjects; however, four subjects clearly showed earlier relative hemodynamic responses within SMA/cingulate motor areas compared with left primary motor areas. These results provide further evidence that the SMA and cingulate motor areas are major contributors to early stage premovement activity and play an important role in the preparation and readiness for voluntary movement. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

When two targets are presented in rapid succession, identification of the first target is nearly perfect while identification of the second is severely impaired at shorter inter-target lags, and then gradually improves as lag increases. This second-target deficit is known as the attentional blink (AB). Numerous studies have implicated competition for access to higher-order processing mechanisms as the primary cause of the AB. However, relatively few studies have directly examined how the AB modulates activity in specific brain areas. To this end, we used fMRI to measure activation in the occipital and parietal cortices (including V1, V2, and area MT) during an AB task. Participants were presented with an initial target of oriented line segments embedded in a central stream of letter distractors. This central target was followed 100 - 700 ms later by a peripheral ‘X’ presented at one of four locations along with three ‘+’ distractors. All peripheral items were presented in the centre of a small field of moving dots. Participants made non-speeded judgments about line-segment orientation and the location of the second target at the end of a trial and to ignore all other stimuli. The results showed a robust AB characterised by a linear improvement in second-target accuracy as lag increased. This pattern of behavioural results was mirrored by changes in activation patterns across a number of visual areas indicating robust modulation of brain activity by the AB.