104 resultados para Vascular Smooth-muscle
Resumo:
The aim of this study was to determine the mechanism by which the aged garlic extract Kyolic has a protective effect against atherosclerosis. Plasma cholesterol of rabbits fed a 1% cholesterol-enriched diet for 6 wk was not reduced by supplementation with 800 muL Kyolic/(kg body . d). In spite of this, Kyolic reduced by 64% (P < 0.05) the surface area of the thoracic aorta covered by fatty streaks and significantly reduced aortic arch cholesterol. Kyolic also significantly inhibited by 50% the development of thickened, lipid-filled lesions in preformed neointimas produced by Fogarty 2F balloon catheter injury of the right carotid artery in cholesterol-fed rabbits. In vitro studies found that Kyolic completely prevented vascular smooth muscle phenotypic change from the contractile. high volume fraction of filament (V(v)myo) state, and inhibited proliferation of smooth muscle cells in the synthetic state with a 50% effective dose (ED50) of 0.2%. Kyolic also slightly inhibited the accumulation of lipid in cultured macrophages but not smooth muscle, and had no effect an the expression of adhesion molecules on the surface of the endothelium or the adherence of leukocytes. It is concluded that Kyolic exerts antiatherogenic effects through inhibition of smooth muscle phenotypic change and proliferation, and by another (unclarified) effect on lipid accumulation in the artery wall.
Resumo:
The effects of five neuropeptides (CGRP, SOM, SP, NPY, VIP), L-NAME (nitric oxide synthase inhibitor), and adrenaline on the contractile tone of the aortic anastomosis in the estuarine crocodile, Crocodylus porosus, were investigated. None of the neuropeptides, which had previously been found to be present in the aortic anastomosis, had any direct effect on the tension developed by ring preparations. L-NAME itself significantly increased the basal tone of the vascular ring preparations, suggesting a tonic release of nitric oxide in the preparation. Adrenaline produced concentration-dependent vasoconstrictions that were counteracted by profound reflex vasodilatations that were susceptible to blockade by L-NAME. Immunohistochemistry revealed the presence of nitric oxide synthase and tyrosine hydroxylase-containing (indicating the presence of a adrenergic innervation) nerve fibres in the adventitia and adventitio-medial border of the aortic anastomosis. These data demonstrate opposing actions of adrenaline and nitric oxide on the vascular smooth muscle in the anastomosis of the C. porosus. The morphology of the anastomosis, with the extremely thick muscular vessel wall, suggests a sphincter-like function for this vessel that could be controlled mainly by adrenergic and nitrergic mechanisms, (C) 2001 Academic Press.
Resumo:
1 Inhibition of rat platelet aggregation by the nitric oxide (NO) donor MAHMA NONOate (Z-1-{N-methyl-N-[6-(N-methylammoniohexyl)amino]}diazen-l-ium-1,2-diolate) was investigated. The aims were to compare its anti-aggregatory effect with vasorelaxation, to determine the effects of the soluble guanylate cyclase inhibitor, ODQ (1H-[1,2,4]oxadiazolo[4,3-ajquinoxalin-1-one), and to investigate the possible role of activation of sarco-encloplasmic reticulum calcium-ATPase (SERCA), independent of soluble guanylate cyclase, using thapsigargin. 2 MAHMA NONOate concentration-dependently inhibited sub-maximal aggregation responses to collagen (2 - 10 mug ml(-1)) and adenosine diphosphate (ADP; 2 mum) in platelet rich plasma. It was (i) more effective at inhibiting aggregation induced by collagen than by ADP, and (ii) less potent at inhibiting platelet aggregation than relaxing rat pulmonary artery. 3 ODQ (10 mum) caused only a small shift (approximately half a log unit) in the concentration-response curve to MAHMA NONOate irrespective of the aggregating agent. 4 The NO-independent activator of soluble guanylate cyclase, YC-1 (3-(5'-hydroxymethyl-2'-furyl)-1-benzy] indazole; 1 - 100 mum), did not inhibit aggregation. The cGMP analogue, 8-pCPT-cGMP (8-(4-chlorophenylthio)guanosine 3'5' cyclic monophosphate; 0.1 - 1 mm), caused minimal inhibition. 5 On collagen-aggregated platelets responses to MAHMA NONOate (ODQ 10 PM present) were abolished by thapsigargin (200 nm). On ADP-aggregated platelets thapsigargin caused partial inhibition. 6 Results with S-nitrosoglutathione (GSNO) resembled those with MAHMA NONOate. Glyceryl trinitrate and sodium nitroprusside were poor inhibitors of aggregation. 7 Thus inhibition of rat platelet aggregation by MAHMA NONOate (like GSNO) is largely ODQ-resistant and, by implication, independent of soluble guanylate cyclase. A likely mechanism of inhibition is activation of SERCA.
Resumo:
The aim was to determine whether uptake of 5-hydroxytryptamine (5-HT) by the 5-HT transporter (SERT) modulates contractile responses to 5-HT in rat pulmonary arteries and whether this modulation is altered by exposure of rats to chronic hypoxia (10% oxygen; 8 h/day; 5 days). The effects of the SERT inhibitor, citalopram (100 nM), on contractions to 5-HT were determined in isolated ring preparations of pulmonary artery (intralobar and main) and compared with data obtained in systemic arteries. In intralobar pulmonary arteries citalopram produced a potentiation (viz. an increase in potency, pEC(50)) of 5-HT. The potentiation was endothelium-dependent in preparations from normoxic rats but endothelium-independent in preparations from hypoxic rats. In main pulmonary artery endothelium-independent potentiation was seen in preparations from hypoxic rats but no potentiation occurred in preparations from normoxic rats. In systemic arteries, citalopram caused endothelium-independent potentiation in aorta but no potentiation in mesenteric arteries; there were no differences between hypoxic and normoxic rats. It is concluded that SERT can influence the concentration of 5-HT in the vicinity of the vasoconstrictor receptors in pulmonary arteries. The data suggest that in pulmonary arteries from hypoxic rats, unlike normoxic rats, the SERT responsible for this effect is not in the endothelium and, hence, is probably in the smooth muscle. The data are compatible with reports that, in the pulmonary circulation, hypoxia induces/up-regulates SERT, and hence increases 5-HT uptake, in vascular smooth muscle. The findings may have implications in relation to the suggested use of SERT inhibitors in the treatment of pulmonary hypertension.
Resumo:
Objective: Our previous studies showed that the pleiotropic cytokine leukaemia inhibitory factor (LIF) inhibits the de novo formation of experimental atherosclerotic lesions. The present study examined whether LIF also inhibits progression of pre-existing atheroma. Methods: Balloon angioplasty was performed on the right carotid arteries of 18 rabbits immediately before placing animals on a cholesterol-enriched diet. After 4 weeks, at which time the intima:media ratio (IN) was 0.99+/-0.12 (n=6), osmotic minipumps containing LIF (n=6) or saline control n=6) were inserted into the peritoneal cavity of each of the remaining rabbits for a further 4 weeks. Arteries were then harvested for analysis. Results: Continuous administration of LIF for the final 4 weeks of an 8-week cholesterol-enriched diet completely inhibited lesion progression in injured carotid arteries (I:M 1.05+/-0.16) compared with the saline-treated group at 8 weeks (1.62+/-0.13; P
Resumo:
Elevated homocysteine (hyperhomocysteinaemia) in renal patients is a major concern for physicians. Although cause and effect between homocysteine and cardiovascular disease (CVD) has not been established in either the general population or renal patients, there is much evidence that this relationship does exist. Purported mechanisms that may explain this effect include increases in endothelial injury, smooth muscle cell proliferation, low-density lipoprotein oxidation and changes in haemostatic balance. Renal patients have a much greater incidence of hyperhomocysteinaemia and this may be explained by decreases in either the renal or extrarenal metabolism of the compound. We conclude that data from long-term placebo-controlled trials are urgently required to determine whether hyperhomocysteinaemia in renal patients is a cause of CVD events and requires therapeutic targeting.
Resumo:
Urotensin-II (UII) is a highly potent endogenous peptide within the cardiovascular system. Through stimulation of Galphaq-coupled UT receptors, UII mediates contraction of vascular smooth muscle and endothelial-dependent vasorelaxation, and positive inotropy in human right atrium and ventricle. A pathogenic role of the UT receptor system is emerging in cardiovascular disease states, with evidence for upregulation of the UT receptor system in patients with congestive heart failure (CHF), pulmonary hypertension, cirrhosis and portal hypertension, and chronic renal failure. In vitro and in vivo studies show that under pathophysiological conditions, UII might contribute to cardiomyocyte hypertrophy, extracellular matrix production, enhanced vasoconstriction, vascular smooth muscle cell hyperplasia, and endothelial cell hyper-permeability. Single nucleotide polymorphisms of the UII gene may also impart a genetic predisposition of patients to diabetes. Therefore, the UT receptor system is a potential therapeutic target in the treatment of cardiac, pulmonary, and renal diseases. UT receptor antagonists are currently being developed to prevent and/or reverse the effects of over-activated UT receptors by the endogenous ligand. This review describes UII peptide and converting enzymes, and UT receptors in the cardiovascular system, focusing on pathophysiological roles of UII in the heart and blood vessels. (C) 2004 Elsevier Inc. All rights reserved,
Resumo:
The durability of all forms of open or percutaneous revascularisation is affected by the development of localised stenoses within the bypass graft or at the site of endarterectomy, stent or angioplasty. The reported incidence of significant restenosis has varied dependent on initial procedure, site, case mix and definition, but is greatest during the first 12 months (Table 1).1 Over the last 40 years tens of thousands of studies have been carried out in an effort to understand or reduce the incidence of restenosis, with two major mechanisms identified as being responsible for the luminal narrowing, namely intimal hyperplasia and constrictive remodelling. Intimal hyperplasia is provoked by changes in the balance of local cytokines controlling vascular smooth muscle cell (VSMC) proliferation, apoptosis and migration, brought about by endothelial or medial injury and alterations in haemodynamic forces. The overall vessel diameter reduction that occurs in constrictive remodelling is less well defined, but likely involves matrix turnover under the control of proteinases, particularly metalloproteinases.
Resumo:
Sustained delivery of heparin to the localized adventitial surface of grafted blood vessels has been shown to prevent the vascular smooth muscle cell (VSMC) proliferation that can lead to graft occlusion and failure. In this study heparin was incorporated into electrospun poly(epsilon-caprolactone) (PCL) fiber mats for assessment as a controlled delivery device. Fibers with smooth surfaces and no bead defects could be spun from polymer solutions with 8% w/v PCL in 7:3 dichloromethane: methanol. A significant decrease in fiber diameter was observed with increasing heparin concentration. Assessment of drug loading, and imaging of fluorescently labeled heparin showed homogenous distribution of heparin throughout the fiber mats. A total of approximately half of the encapsulated heparin was released by diffusional control from the heparin/PCL fibers after 14 days. The fibers did not induce an inflammatory response in macrophage cells in vitro and the released heparin was effective in preventing the proliferation of VSMCs in culture. These results suggest that electrospun PCL fibers are a promising candidate for delivery of heparin to the site of vascular injury. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Background-Marfan syndrome (MFS), a condition caused by fibrillin-1 gene mutation is associated with aortic aneurysm that shows elastic lamellae disruption, accumulation of glycosaminoglycans, and vascular smooth muscle cell (VSMC) apoptosis with minimal inflammatory response. We examined aneurysm tissue and cultured cells for expression of transforming growth factor-beta1 to -beta3 (TGF beta 1 to 3), hyaluronan content, apoptosis, markers of cell migration, and infiltration of vascular progenitor cells (CD34). Methods and Results-MFS aortic aneurysm (6 males, 5 females; age 8 to 78 years) and normal aorta (5 males, 3 females; age 22 to 56 years) were used. Immunohistochemistry showed increased expression of TGF beta 1 to 3, hyaluronan, and CD34-positive microcapillaries in MFS aneurysm compared with control. There was increased expression of TGF beta 1 to 3 and hyaluronan in MFS cultured VSMCs, adventitial fibroblasts (AF), and skin fibroblasts (SF). Apoptosis was increased in MFS (VSMC: mean cell loss in MFS 29%, n of subjects = 5, versus control 8%, n = 3, P < 0.05; AF: 28%, n = 5 versus 7%, n = 5, P < 0.05; SF: 29%, n = 3 versus 4%, n = 3, not significant). In MFS, there was a 2-fold increase in adventitial microcapillaries containing CD34-positive cells compared with control tissue. Scratch wound assay showed absence of CD44, MT1-MMP, and beta-3 integrin at the leading edge of migration in MFS indicating altered directional migration. Western blot showed increased expression of TGF beta 1 to 3 in MFS but no change in expression of CD44, MT1-MMP, or beta-3 integrin compared with controls. Conclusions-There was overexpression of TGF-beta in MFS associated with altered hyaluronan synthesis, increased apoptosis, impaired progenitor cell recruitment, and abnormal directional migration. These factors limit tissue repair and are likely to contribute to aneurysm development.
Resumo:
Introduction: The vasoconstricting peptide endothelin-1 (ET-1) binds two G-protein-coupled receptor subtypes, the Endothelin A (ETA) and Endothelin B (ETB) receptors. The ETB receptor subtype has been predominantly localised to the arterial and venous endothelial cells both in-vivo and in culture. Stimulation of ET-1 through this receptor subtype can modulate the expression of endothelial nitric oxide and accelerate endothelial cell wound healing. In comparison the ETA receptor is abundantly expressed in medial vascular smooth muscle cells and mediates the vasoconstrictor action of ET-1 and is thought to play a key role in angiogenesis. Aims: To determine the levels of ETA receptor expression and localisation in the internal mammary artery (IMA). Methods: Twenty-four IMA sections were examined from patients undergoing coronary artery bypass (CABG) surgery (5F; 19M; mean age 67 years). And 14 organ donor IMA specimens were used as controls (7M; 7F; mean age 45 years. The tissue was fixed in formalin and processed for histology. Immunohistochemistry was performed on cross-sections of the left distal IMA to assess the areas of ETA receptor staining. The percentage are of ETA receptor staining in the media was calculated using image analysis software connected to an optical microscope and semiquantitative assessment was used to grade staining intensity, that is, mild (+), moderate (++) and strong (+++). Results: ETA receptor staining was significantly elevated in the media of the CABG specimens compared with the donor controls (46.88+/11.52% Vs 18.58+/7.65%, P = .0001). Interestingly, the endothelium (++) of the IMA, as well as the small microvessels in the adventitia (+++) stained positive for ETA receptor expression. Without using a haematoxylin counterstain, the nuclei of the cell stained more intensely (+++) with respect to the cytoplasm in both the medial smooth muscle (++) and endothelial cells (++). Fibroblasts in the medial adventitia junction were also positive for ETA receptor expression (+++). Further, this receptor subtype was also strongly expressed by inflammatory cells (monocytes and macrophages). Conclusions: These results demonstrate that the ETA receptor expression is increased in the medial SMC layer of the CABG IMA specimens and also present in the endothelium, vasa vasorum, fibroblasts and inflammatory cell types. Thus it is possible that in addition to affecting vascular tone, ET-1 may play an important role in IMA remodelling.
Resumo:
Plasma leaking from damaged retinal blood vessels can have a significant impact on the pathologies of the posterior segment of the eye. Inflammation in the eye and metabolic change resulting from diabetes mellitus causes vascular leakage with alteration of the phenotype of retinal pigment epithelial (RPE) cells and fibrocytes, resulting in changes in cell function. Phenotypically altered cells then significantly contribute to the pathogenesis of retinopathies by being incorporated into tractional membranes in the vitreous, where they secrete matrix molecules, such as fibronectin, and express altered cell surface antigens. We hypothesize that there is a direct relationship between the leaking of plasma and the proliferation and phenotypic change of RPE cells and fibroblasts, thus exacerbating the pathology of retinal disease. If the hypothesis is correct, control of vascular leakage becomes an important target of therapy in proliferative vitreoretinopathy.
Resumo:
A method by which to overcome the clinical symptoms of atherosclerosis is the insertion of a graft to bypass an artery blocked or impeded by plaque. However, there may be insufficient autologous mammary artery for multiple or repeat bypass, saphenous vein may have varicose degenerative alterations that can lead to aneurysm in high-pressure sites, and small-caliber synthetic grafts are prone to thrombus induction and occlusion. Therefore, the aim of the present study was to develop an artificial blood conduit of any required length and diameter from the cells of the host for autologous transplantation. Silastic tubing, of variable length and diameter, was inserted into the peritoneal cavity of rats or rabbits. By 2 weeks, it had become covered by several layers of myofibroblasts, collagen matrix, and a single layer of mesothelium. The Silastic tubing was removed from the harvested implants, and the tube of living tissue was everted such that it now resembled a blood vessel with an inner lining of nonthrombotic mesothelial cells (the intima), with a media of smooth muscle-like cells (myofibroblasts), collagen, and elastin, and with an outer collagenous adventitia. The tube of tissue (10 to 20 mm long) was successfully grafted by end-to-end anastomoses into the severed carotid artery or abdominal aorta of the same animal in which they were grown. The transplant remained patent for at least 4 months and developed structures resembling elastic lamellae. The myofibroblasts gained a higher volume fraction of myofilaments and became responsive to contractile agonists, similar to the vessel into which they had been grafted. It is suggested that these nonthrombogenic tubes of living tissue, grown in the peritoneal cavity of the host, may be developed as autologous coronary artery bypass grafts or as arteriovenous access fistulae for hemodialysis patients.
Resumo:
Pulmonary vascular remodeling is an important pathological feature of pulmonary hypertension, leading to increased pulmonary vascular resistance and reduced compliance. It involves thickening of all three layers of the blood vessel wall (due to hypertrophy and/or hyperplasia of the predominant cell type within each layer), as well as extracellular matrix deposition. Neomuscularisation of non-muscular arteries and formation of plexiform and neointimal lesions also occur. Stimuli responsible for remodeling involve transmural pressure, stretch, shear stress, hypoxia, various mediators [angiotensin II, endothelin (ET)-1, 5-hydroxytryptamine, growth factors, and inflammatory cytokines], increased serine elastase activity, and tenascin-C. In addition, there are reductions in the endothelium-derived antimitogenic substances, nitric oxide, and prostacyclin. Intracellular signalling mechanisms involved in pulmonary vascular remodeling include elevations in intracellular Ca2+ and activation of the phosphatidylinositol pathway, protein kinase C, and mitogen-activated protein kinase. In animal models of pulmonary hypertension, various drugs have been shown to attenuate pulmonary vascular remodeling. These include angiotensin-converting enzyme inhibitors, angiotensin receptor antagonists, ET receptor antagonists, ET-converting enzyme inhibitors, nitric oxide, phosphodiesterase 5 inhibitors, prostacyclin, Ca2+-channel antagonists, heparin, and serine elastase inhibitors. Inhibition of remodeling is generally accompanied by reductions in pulmonary artery pressure. The efficacy of some of the drugs varies, depending on the animal model of the disease. In view of the complexity of the remodeling process and the diverse aetiology of pulmonary hypertension in humans, it is to be anticipated that successful anti-remodeling therapy in the clinic will require a range of different drug options. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
In pulmonary hypertension, changes in pulmonary vascular structure and function contribute to the elevation in pulmonary artery pressure. The time-courses for changes in function, unlike structure, are not well characterised. Medial hypertrophy and neomuscularisation and reactivity to vasoactive agents were examined in parallel in main and intralobar pulmonary arteries and salt-perfused lungs from rats exposed to hypoxia (10% O-2) for 1 and 4 weeks (early and established pulmonary hypertension, respectively). After 1 week of hypoxia, in isolated main and intralobar arteries, contractions to 5-hydroxytryptamine and U46619 (thromboxane-mimetic) were increased whereas contractions to angiotensins I and II and relaxations to acetylcholine were reduced. These alterations varied quantitatively between main and intralobar arteries and, in many instances, regressed between 1 and 4 weeks. The alterations in reactivity did not necessarily link chronologically with alterations in structure. In perfused lungs, constrictor responses to acute alveolar hypoxia were unchanged after 1 week but were increased after 4 weeks, in conjunction with the neomuscularisation of distal alveolar arteries. The data suggest that in hypoxic pulmonary hypertension, the contribution of altered pulmonary vascular reactivity to the increase in pulmonary artery pressure may be particularly important in the early stages of the disease.