77 resultados para Tripartite entanglement
Resumo:
Flows of complex fluids need to be understood at both macroscopic and molecular scales, because it is the macroscopic response that controls the fluid behavior, but the molecular scale that ultimately gives rise to rheological and solid-state properties. Here the flow field of an entangled polymer melt through an extended contraction, typical of many polymer processes, is imaged optically and by small-angle neutron scattering. The dual-probe technique samples both the macroscopic stress field in the flow and the microscopic configuration of the polymer molecules at selected points. The results are compared with a recent tube model molecular theory of entangled melt flow that is able to calculate both the stress and the single-chain structure factor from first principles. The combined action of the three fundamental entangled processes of reptation, contour length fluctuation, and convective constraint release is essential to account quantitatively for the rich rheological behavior. The multiscale approach unearths a new feature: Orientation at the length scale of the entire chain decays considerably more slowly than at the smaller entanglement length.
Resumo:
A semiconductor based scheme has been proposed for generating entangled photon pairs from the radiative decay of an electrically pumped biexciton in a quantum dot. Symmetric dots produce polarization entanglement, but experimentally realized asymmetric dots produce photons entangled in both polarization and frequency. In this work, we investigate the possibility of erasing the “which-path” information contained in the frequencies of the photons produced by asymmetric quantum dots to recover polarization-entangled photons. We consider a biexciton with nondegenerate intermediate excitonic states in a leaky optical cavity with pairs of degenerate cavity modes close to the nondegenerate exciton transition frequencies. An open quantum system approach is used to compute the polarization entanglement of the two-photon state after it escapes from the cavity, measured by the visibility of two-photon interference fringes. We explicitly relate the two-photon visibility to the degree of the Bell-inequality violation, deriving a threshold at which Bell-inequality violations will be observed. Our results show that an ideal cavity will produce maximally polarization-entangled photon pairs, and even a nonideal cavity will produce partially entangled photon pairs capable of violating a Bell-inequality.
Resumo:
Entanglement is defined for each vector subspace of the tensor product of two finite-dimensional Hilbert spaces, by applying the notion of operator entanglement to the projection operator onto that subspace. The operator Schmidt decomposition of the projection operator defines a string of Schmidt coefficients for each subspace, and this string is assumed to characterize its entanglement, so that a first subspace is more entangled than a second, if the Schmidt string of the second majorizes the Schmidt string of the first. The idea is applied to the antisymmetric and symmetric tensor products of a finite-dimensional Hilbert space with itself, and also to the tensor product of an angular momentum j with a spin 1/2. When adapted to the subspaces of states of the nonrelativistic hydrogen atom with definite total angular momentum (orbital plus spin), within the space of bound states with a given total energy, this leads to a complete ordering of those subspaces by their Schmidt strings.
Resumo:
We provide optimal measurement schemes for estimating relative parameters of the quantum state of a pair of spin systems. We prove that the optimal measurements are joint measurements on the pair of systems, meaning that they cannot be achieved by local operations and classical communication. We also demonstrate that in the limit where one of the spins becomes macroscopic, our results reproduce those that are obtained by treating that spin as a classical reference direction.
Resumo:
What interactions are sufficient to simulate arbitrary quantum dynamics in a composite quantum system? It has been shown that all two-body Hamiltonian evolutions can be simulated using any fixed two-body entangling n-qubit Hamiltonian and fast local unitaries. By entangling we mean that every qubit is coupled to every other qubit, if not directly, then indirectly via intermediate qubits. We extend this study to the case where interactions may involve more than two qubits at a time. We find necessary and sufficient conditions for an arbitrary n-qubit Hamiltonian to be dynamically universal, that is, able to simulate any other Hamiltonian acting on n qubits, possibly in an inefficient manner. We prove that an entangling Hamiltonian is dynamically universal if and only if it contains at least one coupling term involving an even number of interacting qubits. For odd entangling Hamiltonians, i.e., Hamiltonians with couplings that involve only an odd number of qubits, we prove that dynamic universality is possible on an encoded set of n-1 logical qubits. We further prove that an odd entangling Hamiltonian can simulate any other odd Hamiltonian and classify the algebras that such Hamiltonians generate. Thus, our results show that up to local unitary operations, there are only two fundamentally different types of entangling Hamiltonian on n qubits. We also demonstrate that, provided the number of qubits directly coupled by the Hamiltonian is bounded above by a constant, our techniques can be made efficient.
Resumo:
We discuss the creation of entanglement between two two-level atoms in the dissipative process of spontaneous emission. It is shown that spontaneous emission can lead to a transient entanglement between the atoms even if the atoms were prepared initially in an unentangled state. The amount of entanglement created in the system is quantified by using two different measures: concurrence and negativity. We find analytical formulae for the evolution of concurrence and negativity in the system. We also find the analytical relation between the two measures of entanglement. The system consists of two two-level atoms which are separated by an arbitrary distance r(12) and interact with each other via the dipole-dipole interaction, and the antisymmetric state of the system is included throughout, even for small interatomic separations, in contrast to the small-sample model. It is shown that for sufficiently large values of the dipole-dipole interaction initially the entanglement exhibits oscillatory behaviour with considerable entanglement in the peaks. For longer times the amount of entanglement is directly related to the population of the slowly decaying antisymmetric state.
Resumo:
We discuss the long-distance transmission of qubits encoded in optical coherent states. Through absorption, these qubits suffer from two main types of errors, namely the reduction of the amplitude of the coherent states and accidental application of the Pauli Z operator. We show how these errors can be fixed using techniques of teleportation and error-correcting codes.
Resumo:
The Einstein-Podolsky-Rosen paradox and quantum entanglement are at the heart of quantum mechanics. Here we show that single-pass traveling-wave second-harmonic generation can be used to demonstrate both entanglement and the paradox with continuous variables that are analogous to the position and momentum of the original proposal.
Resumo:
From June 1995 to August 2002 we assessed green turtle (Chelonia mydas) population structure and survival, and identified human impact, at Bahia de los Angeles, a large bay that was once the site of the greatest sea turtle harvest rates in the Gulf of California, Mexico. Turtles were captured live with entanglement nets and mortality was quantified through stranding surveys and flipper tag recoveries. A total of 14,820 netting hours (617.5 d) resulted in 255 captures of 200 green turtles. Straight-carapace length and mass ranged from 46.0-100.0 cm (mean = 74.3 +/- 0.7 cm) and 14.5-145.0 kg (mean = 61.5 +/- 1.7 kg), respectively. The size-frequency distribution remained stable during all years and among all capture locations. Anthropogenic-derived injuries ranging from missing flippers to boat propeller scars were present in 4% of captured turtles. Remains of 18 turtles were found at dumpsites, nine stranded turtles were encountered in the study area, and flipper tags from seven turtles were recovered. Survival was estimated at 0.58 for juveniles and 0.97 for adults using a joint live-recapture and dead-recovery model (Burnham model). Low survival among juveniles, declining annual catch per unit effort, and the presence of butchered carcasses indicated human activities continue to impact green turtles at this foraging area.
Resumo:
Quantum optics experiments on bright beams are based on the spectral analysis of field fluctuations and typically probe correlations between radio-frequency sideband modes. However, the extra degree of freedom represented by this dual-mode picture is generally ignored. We demonstrate the experimental operation of a device which can be used to separate the quantum sidebands of an optical field. We use this device to explicitly demonstrate the quantum entanglement between the sidebands of a squeezed beam.
Resumo:
We experimentally demonstrate the superior discrimination of separated, unentangled two-qubit correlated states using nonlocal measurements, when compared with measurements based on local operations and classical communications. When predicted theoretically, this phenomenon was dubbed quantum nonlocality without entanglement. We characterize the performance of the nonlocal, or joint, measurement with a payoff function, for which we measure 0.72 +/- 0.02, compared with the maximum locally achievable value of 2/3 and the overall optimal value of 0.75.
Resumo:
We experimentally determine weak values for a single photon's polarization, obtained via a weak measurement that employs a two-photon entangling operation, and postselection. The weak values cannot be explained by a semiclassical wave theory, due to the two-photon entanglement. We observe the variation in the size of the weak value with measurement strength, obtaining an average measurement of the S-1 Stokes parameter more than an order of magnitude outside of the operator's spectrum for the smallest measurement strengths.
Resumo:
We present numerical results on the capacities of two-qubit unitary operations for performing communication and creating entanglement. The capacities for communication considered are based upon the increase in Holevo information of an ensemble. Our results indicate that the capacity may be accurately estimated using ensemble sizes and ancilla dimensions of 4. In addition, the calculated values of these capacities were close to, and in some cases equal to, the similarly defined entangling capacities; this result indicates connections between these capacities.
Resumo:
his article addresses two aspects of Australia's soft secular government. The first aspect explains how, and asks why, judges have been inactive in helping to draw the contours of secular government in Australia. The principal reason is that much of the social regulation that provokes the interest of faith-based groups is the constitutional concern of the States, and no State Constitution claims to coordinate relations between church and state. Moreover, the electorate has twice refused to pass referenda, in 1944 and 1988, for extending a constitutional demand of secular governance to the States. However, this is not so for the Commonwealth. It falls under the restrictions of section 116 of the federal Constitution, which states: The Commonwealth shall not make any law for establishing any religion ('the establishment clause') or for imposing any religious observance, or for prohibiting the free exercise of any religion ('the free exercise clause'), and no religious test shall be required as a qualification for any office or public trust under the Commonwealth. As will be explained, while methods of legal interpretation suggest that section 116's establishment clause could place mild demands of non-discrimination on the federal Parliament, judicial inactivity in policing such demands on the Commonwealth, paradoxically, has arguably been secured by judicial activism in the High Court. A second aspect of secular government addressed is the High Court's disposal of 'the separation of church and state' as a constitutional principle in Australia. The contrast, of course, is to the United States, where for sixty years 'separation' has been given uneven recognition as a rule of constitutional law, and has undoubtedly driven the development of hard forms of secular governance in that country. The centrepiece of American secular government is the 1971 decision in Lemon v Kurtzman, where the US Supreme Court held that valid legislation had to pass three tests, ie: First, the statute must have a secular legislative purpose; second, its principal or primary effect must be one that neither advances nor inhibits religion .. . finally, the statute must not foster 'an excessive government entanglement with religion. The third 'entanglement' prong of Lemon is the modern, less ambitious, form of the 'wall of separation', prohibiting too close an engagement between church and state. As this paper will demonstrate, 'entanglement's' destiny shows how unlikely it is that 'separation' can survive as a meaningful constitutional principle in the USA. And, it will also be argued that 'separation' has even poorer prospects for import to Australia.
Resumo:
In this work, we investigate the quantum dynamics of a model for two singlemode Bose-Einstein condensates which are coupled via Josephson tunnelling. Using direct numerical diagonalization of the Hamiltonian, we compute the time evolution of the expectation value for the relative particle number across a wide range of couplings. Our analysis shows that the system exhibits rich and complex behaviours varying between harmonic and non-harmonic oscillations, particularly around the threshold coupling between the delocalized and selftrapping phases. We show that these behaviours are dependent on both the initial state of the system and regime of the coupling. In addition, a study of the dynamics for the variance of the relative particle number expectation and the entanglement for different initial states is presented in detail.