161 resultados para Transmission function


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dormancy release in seeds of Lolium rigidum Gaud. (annual ryegrass) was investigated in relation to temperature and seed water content. Freshly matured seeds were collected from cropping fields at Wongan Hills and Merredin, Western Australia. Seeds from Wongan Hills were equilibrated to water contents between 6 and 18% dry weight and after-ripened at constant temperatures between 9 and 50degreesC for up to 23 weeks. Wongan Hills and Merredin seeds at water contents between 7 and 17% were also after-ripened in full sun or shade conditions. Dormancy was tested at regular intervals during after-ripening by germinating seeds on agar at 12-h alternating 15degreesC (dark) and 25degreesC (light) periods. Rate of dormancy release for Wongan Hills seeds was a positive linear function of after-ripening temperature above a base temperature (T-b) of 5.4degreesC. A thermal after-ripening time model for dormancy loss accounting for seed moisture in the range 6-18% was developed using germination data for Wongan Hills seeds after-ripened at constant temperatures. The model accurately predicted dormancy release for Wongan Hills seeds after-ripened under naturally fluctuating temperatures. Seeds from Merredin responded similarly but had lower dormancy at collection and a faster rate of dormancy release in seeds below 9% water content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amygdala plays a major role in the acquisition and expression of fear conditioning. NMDA receptor-dependent synaptic plasticity within the basolateral amygdala has been proposed to underlie the acquisition and possible storage of fear memories. Here the properties of fast glutamatergic transmission in the lateral and central nuclei of the amygdala are presented. In the lateral amygdala, two types of neurons, interneurons and projection neurons, could be distinguished by their different firing properties. Glutamatergic inputs to interneurons activated AMPA receptors with inwardly rectifying current-voltage relations (I-Vs), whereas inputs to projection neurons activated receptors that had linear I-Vs, indicating that receptors on interneurons lack GluR2 subunits. Inputs to projection neurons formed dual component synapses with both AMPA and NMDA components, whereas at inputs to interneurons, the contribution of NMDA receptors was very small. Neurons in the central amygdala received dual component glutamatergic inputs that activated AMPA receptors with linear I-Vs. NMDA receptor-mediated EPSCs had slow decay time constants in the central nucleus. Application of NR2B selective blockers ifenprodil or CP-101,606 blocked NMDA EPSCs by 70% in the central nucleus, but only by 30% in the lateral nucleus. These data show that the distribution of glutamatergic receptors on amygdalar neurons is not uniform. In the lateral amygdala, interneurons and pyramidal neurons express AMPA receptors with different subunit compositions. Synapses in the central nucleus activate NMDA receptors that contain NR1 and NR2B subunits, whereas synapses in the lateral nucleus contain receptors with both NR2A and NR2B subunits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium-activated potassium channels are a large family of potassium channels that are found throughout the central nervous system and in many other cell types. These channels are activated by rises in cytosolic calcium largely in response to calcium influx via voltage-gated calcium channels that open during action potentials. Activation of these potassium channels is involved in the control of a number of physiological processes from the firing properties of neurons to the control of transmitter release. These channels form the target for modulation for a range of neurotransmitters and have been implicated in the pathogenesis of neurological and psychiatric disorders. Here the authors summarize the varieties of calcium-activated potassium channels present in central neurons and their defining molecular and biophysical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The colors of 51 species of Hawaiian reef fish have been measured using a spectrometer and therefore can be described in objective terms that are not influenced by the human visual experience. In common with other known reef fish populations, the colors of Hawaiian reef fish occupy spectral positions from 300-800nm; yellow or orange with blue, yellow with black, and black with white are the most frequently combined colors; and there is no link between possession of ultraviolet (UV) reflectance and UV visual sensitivity or the potential for UV visual sensitivity. In contrast to other reef systems, blue, yellow, and orange appear more frequently in Hawaiian reef fish. Based on spectral quality of reflections from fish skin, trends in fish colors can be seen that are indicative of both visually driven selective pressures and chemical or physical constraints on the design of colors. UV-reflecting colors can function as semiprivate communication signals. White or yellow with black form highly contrasting patterns that transmit well through clear water. Labroid fishes display uniquely complex colors but lack the ability to see the UV component that is common in their pigments. Step-shaped spectral curves are usually long-wavelength colors such as yellow or red, and colors with a peak-shaped spectral curves are green, blue, violet, and UV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spastic (spa) and oscillator (ot) mouse have naturally occurring mutations in the inhibitory glycine receptor (GlyR) and exhibit severe motor disturbances when exposed to unexpected sensory stimuli. We examined the effects of the spa and ot mutations on GlyR- and GABA(A)R-mediated synaptic transmission in the superficial dorsal horn (SFDH), a spinal cord region where inhibition is important for nociceptive processing. Spontaneous mIPSCs were recorded from visually identified neurones in parasagittal spinal cord slices. Neurones received exclusively GABA(A)R-mediated mIPSCs, exclusively GlyR-mediated mIPSCs or both types of mIPSCs. In control mice (wild-type and spa/+) over 40 % of neurones received both types of mIPSCs, over 30 % received solely GABA(A)R-mediated mIPSCs and the remainder received solely GlyR-mediated mIPSCs. In spa/spa animals, 97 % of the neurones received exclusively GABA(A)ergic or both types of mIPSCs. In ot/ot animals, over 80 % of the neurones received exclusively GABA(A)R-mediated mIPSCs. GlyR-mediated mIPSC amplitude and charge were reduced in spa/spa and ot/ot animals. GABA,Rmediated mIPSC amplitude and charge were elevated in spa/spa but unaltered in ot/ot animals. GlyR- and GABA(A)R-mediated mIPSC decay times were similar for all genotypes, consistent with the mutations altering receptor numbers but not kinetics. These findings suggest the spastic and oscillator mutations, traditionally considered motor disturbances, also disrupt inhibition in a sensory region associated with nociceptive transmission. Furthermore, the spastic mutation results in a compensatory increase in GABA(A)ergic transmission in SFDH neurones, a form of inhibitory synaptic plasticity absent in the oscillator mouse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The initiation of graft vs. host disease (GVHD) after stem cell transplantation is dependent on direct antigen presentation by host antigen presenting cells (APC) while the effect of indirect antigen presentation by donor APC is unknown. We have studied the role of indirect antigen presentation in allogenic responses by adding populations of cytokine-expanded donor APC to haematopoietic grafts that would otherwise induce lethal GVHD. Progenipoietin-1 (a synthetic G-CSF/Flt-3 L molecule) and G-CSF expanded myeloid DC, plasmacytoid DC and a novel granulocyte-monocyte precursor population (GM) that differentiate into class IIpos, CD80/CD86pos, CD40neg APC during GVHD. Whereas addition of plasmacytoid and myeloid donor DC augmented GVHD, GM cells induced transplant tolerance via MHC class II restricted generation of IL-10-secreting regulatory T cells. Thus a population of cytokine expanded granulocyte-monocyte precursors function as regulatory antigen presenting cells, suggesting that G-CSF derivatives may have application in disorders characterised by a loss of self-tolerance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Giardia duodenalis isolates recovered from humans and clogs living in the same locality in a remote tea-growing community of northeast India were characterized at 3 different loci; the SSU-rDNA, elongation factor 1-alpha (ef1-alpha) and triose phosphate isomerase (tpi) gene. Phylogenetic analysis of the SSU-rDNA and ef1-alpha genes provided poor genetic resolution of the isolates within various assemblages, stressing the importance of using multiple loci when inferring genotypes to Giardia. Analysis of the tpi gene provided better genetic resolution and placed canine Giardia isolates within the genetic groupings of human isolates (Assemblages A and B). Further evidence for zoonotic transmission was supported by epidemiological data showing a highly significant association between the prevalence of Giardia in humans and presence of it Giardia-positive dog in the same household (odds ratio 3.01, 95%) CI, 1.11, 8.39, P = 0.0000).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD) is a fatal neuromuscular condition affecting approximately one in 3500 live male births resulting from the lack of the myocyte protein dystrophin. The absence of dystrophin in cardiac myocytes is associated with calcium overload which in turn activates calcium-dependent proteolytic enzymes contributing to congestive heart failure, muscle necrosis and fibrosis. To date, the basis for the calcium overload has not been determined. Since L-type calcium channels are a major mediator of calcium influx we determined their potential contribution to the calcium overload. Male muscular dystrophy (mdx) mice and control C57BL10ScSn (C57) mice aged 12– 16 weeks were used in all experiments. In tissue bath studies, isolated contracting left atria from mdx revealed a reduced potency to the dihydropyridine (DHP) agonist BayK8644 and antagonist nifedipine (P < 0.05). Similarly, radioligand binding studies using the DHP antagonist [3H]-PN 200-110 showed a reduced potency (P < 0.05) in isolated membranes, associated with an increased receptor density (P < 0.05). The increased receptor density was supported by RT-PCR experiments revealing increased RNAfor the DHP receptor. Patch clamp studies revealed the presence of a diltiazem sensitive calcium current that showed delayed inactivation in isolated mdx myocytes (P < 0.01). In conclusion, the increased number of DHP binding sites and the delay in L-type current inactivation may both contribute to increased calcium influx and hence calcium overload in the dystrophin deficient mdx cardiac myocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ozone is a major air pollutant with adverse health effects which exhibit marked inter-individual variability. In mice, regions of genetic linkage with ozone-induced lung injury include the tumor necrosis factor-alpha (TNF), lymphotoxin-alpha (LTA), Toll-like receptor 4 (TLR4), superoxide dismutase (SOD2), and glutathione peroxidase (GPX1) genes. We genotyped polymorphisms in these genes in 51 individuals who had undergone ozone challenge. Mean change in FEV1 with ozone challenge, as a percentage of baseline, was -3% in TNF -308G/A or A/A individuals, compared with -9% in G/G individuals (p = 0.024). When considering TNF haplotypes, the smallest change in FEV1 with ozone exposure was associated with the TNF haplotype comprising LTA +252G/TNF -1031T/TNF -308A/TNF -238G. This association remained statistically significant after correction for age, sex, disease, and ozone concentration (p = 0.047). SOD2 or GPX1 genotypes were not associated with lung function, and the TLR4 polymorphism was too infrequent to analyze. The results of this study support TNF as a genetic factor for susceptibility to ozone-induced changes in lung function in humans, and has potential implications for stratifying health risks of air pollution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IL-1 is a key proinflammatory driver of several autoimmune diseases including juvenile inflammatory arthritis, diseases with mutations in the NALP/cryopyrin complex and Crohn’s disease, and is genetically or clinically associated with many others. IL-1 is a pleiotropic proinflammatory cytokine; however the mechanisms by which increased IL-1 signaling promotes autoreactive T cell activity are not clear. Here we show that autoimmune-prone NOD and IL-1 receptor antagonist-deficient C57BL/6 mice both produce high levels of IL-1, which drives autoreactive effector cell expansion. IL-1beta drives proliferation and cytokine production by CD4+CD25+FoxP3– effector/memory T cells, attenuates CD4+CD25+FoxP3+ regulatory T cell function, and allows escape of CD4+CD25– autoreactive effectors from suppression. Thus, inflammation or constitutive overexpression of IL-1beta in a genetically predisposed host can promote autoreactive effector T cell expansion and function, which attenuates the ability of regulatory T cells to maintain tolerance to self.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diverse infectious and inflammatory environmental triggers, through unknown mechanisms, initiate autoimmune disease in genetically predisposed individuals. Here we show that IL-1b, a key cytokine mediator of the inflammatory response, suppresses CD25+CD4+ regulatory T cell function. Surprisingly, suppression by IL-1b occurs only where antigen is presented simultaneously to CD25+CD4+ T cells and to CD25CD4+ antigen-specific effector T cells. Further, NOD mice show an intrinsic over-production of IL-1 that contributes to reduced CD25+CD4+ regulatory T cell function. Thus, inflammation or constitutive over-expression of IL-1b in a genetically predisposed host can initiate a positive feedback loop licensing autoantigen-specific effector cells to inhibit the regulatory T cells maintaining tolerance to self.