48 resultados para Transmission electron microscopy
Resumo:
The ultrastructure of pecans was investigated using light microscopy, environmental scanning electron microscopy, scanning electron microscopy, and transmission electron microscopy. Specific methodology for the sample preparation of pecans for electron microscopy investigations was developed. Electron microscopy of the ultrastructure of opalescent (discoloration of the interior) and nonopalescent kernels revealed that cellular damage was occurring in opalescent kernels. The damage was due to cell wall and membrane rupture, which accounted for the release of oil throughout the kernel. This rupture is due to the lower level of calcium in the cell membranes of opalescent pecans, as shown by energy dispersive X-ray spectrometry, making them more susceptible to damage.
Resumo:
A series of polyethylene-layered silicate nanocomposites has been studied as possible new candidates for rotational moulding. Two organically treated layered silicates were melt-compounded into a maleated linear low-density polyethylene host polymer at loadings of 6 and 9%, by weight. The morphology and properties of the nanocomposites were assessed by using dynamic mechanical thermal analysis, parallel-plate rheometry, wide-angle X-ray diffraction and transmission electron microscopy. The sintering behaviour of the nanocomposites was qualitatively assessed via hot-stage microscopy, indicating that the choice of nanofiller will play an important role in terms of producing nanocomposite materials with acceptable processability for rotational moulding. (C) 2003 Society of Chemical Industry.
Resumo:
The variation of the crystallite structure of several coal chars during gasification in air and carbon dioxide was studied by high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) techniques. The XRD analysis of the partially gasified coal chars, based on two approaches, Scherrer's equation and Alexander and Sommer's method, shows a contradictory trend of the variation of the crystallite height with carbon conversion, despite giving a similar trend for the crystallite width change. The HRTEM fringe images of the partially gasified coal chars indicate that large and highly ordered crystallites exist at conversion levels as high as 86%. It is also demonstrated that the crystalline structure of chars can be very different although their pore structures are similar, suggesting a combination of crystalline structure analysis with pore structure analysis in studies of carbon gasification.