48 resultados para Thermal fatigue
Resumo:
Objectives: To examine the changes in torque output resulting from fatigue, as well as changes in electromyographic measures of trunk muscles during isometric axial rotation and to compare these changes between directions of axial rotation. Design: Subjects performed fatiguing right and left isometric axial rotation of the trunk at 80% of maximum voluntary contraction while standing upright. Setting: A rehabilitation center. Participants: Twenty-three men with no history of back pain. Interventions: Not applicable. Main Outcome Measures: Surface electromyographic Signals were recorded from 6 trunk muscles bilaterally. The primary torque in the transverse plane and the coupling torques in sagittal and coronal planes were also measured. Results: During the fatiguing axial rotation contraction, coupling torques of both sagittal and coronal planes were slightly decreased and no difference was found between directions of axial rotation. Decreasing median frequency and an increase in electromyographic amplitude were also found in trunk muscles with different degrees of changes in individual muscles. There were significant differences (P
Resumo:
A bituminous coal was pyrolyzed in a nitrogen stream in an entrained flow reactor at various temperatures from 700 to 1475 degreesC. Char samples were collected at different positions along the reactor. Each collected sample was oxidized nonisothermally in a TGA for reactivity determination. The reactivity of the coal char was found to decrease rapidly with residence time until 0.5 s, after which it decreased only slightly. On the bases of the reactivity data at various temperatures, a new approach was utilized to obtaining the true activation energy distribution function for thermal annealing without the assumption of any distribution function form or a constant preexponential factor. It appears that the true activation energy distribution function consists of two separate parts corresponding to different temperature ranges, suggesting different mechanisms in different temperature ranges. Partially burnt coal chars were also collected along the reactor when the coal was oxidized in air at various temperatures from 700 to 1475 degreesC. The collected samples were analyzed for the residual carbon content and the specific reaction rate was estimated. The characteristic time of thermal deactivation was compared with that of oxidation under realistic conditions. The characteristic times were found to be close to each other, indicating the importance of thermal deactivation during combustion of the coal studied.
Resumo:
For some applications for fluoropolymers they must be subjected to high-energy radiation, e.g., when they are grafted with styrene using an irradiation method to produce fuel cell membranes or matrix supports for combinatorial chemistry. In some of these applications they may be subjected to mechanical stress or elevated temperature, so it is important to elucidate the effects of the radiolysis on these properties. In the present work the effect of gamma-radiolysis on the glass transition, melting behavior, and thermal stability of PFA has been studied as well as the effect of the radiolysis on the tensile properties of the polymer.