57 resultados para TRANSMURAL DRAINAGE
Resumo:
The Upper Newlands Seam in the northern Bowen Basin, Queensland, Australia consists of six benches (A-F) that have different petrographic assemblages. Benches C and E contain relatively abundant inertodetrinite and mineral matter, as well as anomalously high reflectance values; these characteristics support a largely allochthonous, detrital origin for the C and E benches. Fractures and cleats in the seam show a consistent orientation of northeast- southwest for face cleats, and a wide range of orientations for fractures. Cleat systems are well developed in bright bands, with poor continuity in the dull coal. Both maceral content and cleat character are suggested to influence gas drainage in the Upper Newlands Seam. A pronounced positive correlation between vitrinite abundance and gas desorption data suggests more efficient drainage from benches with abundant vitrinite. Conversely, inertinite-rich benches are suggested to have less efficient drainage, and possibly retain gas within pore spaces, which could increase the outburst potential of the coal. (C) 2001 Elsevier Science BN. All rights reserved.
Resumo:
Pulmonary vascular remodeling is an important pathological feature of pulmonary hypertension, leading to increased pulmonary vascular resistance and reduced compliance. It involves thickening of all three layers of the blood vessel wall (due to hypertrophy and/or hyperplasia of the predominant cell type within each layer), as well as extracellular matrix deposition. Neomuscularisation of non-muscular arteries and formation of plexiform and neointimal lesions also occur. Stimuli responsible for remodeling involve transmural pressure, stretch, shear stress, hypoxia, various mediators [angiotensin II, endothelin (ET)-1, 5-hydroxytryptamine, growth factors, and inflammatory cytokines], increased serine elastase activity, and tenascin-C. In addition, there are reductions in the endothelium-derived antimitogenic substances, nitric oxide, and prostacyclin. Intracellular signalling mechanisms involved in pulmonary vascular remodeling include elevations in intracellular Ca2+ and activation of the phosphatidylinositol pathway, protein kinase C, and mitogen-activated protein kinase. In animal models of pulmonary hypertension, various drugs have been shown to attenuate pulmonary vascular remodeling. These include angiotensin-converting enzyme inhibitors, angiotensin receptor antagonists, ET receptor antagonists, ET-converting enzyme inhibitors, nitric oxide, phosphodiesterase 5 inhibitors, prostacyclin, Ca2+-channel antagonists, heparin, and serine elastase inhibitors. Inhibition of remodeling is generally accompanied by reductions in pulmonary artery pressure. The efficacy of some of the drugs varies, depending on the animal model of the disease. In view of the complexity of the remodeling process and the diverse aetiology of pulmonary hypertension in humans, it is to be anticipated that successful anti-remodeling therapy in the clinic will require a range of different drug options. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
Lecithocladium invasor n.sp. is described from the oesophagus of Naso annulatus, N. tuberosus and N. vlamingii on the Great Barrier Reef, Australia. The worms penetrate the oesophageal mucosa and induce chronic transmural nodular granulomas, which expand the full thickness of the oesophageal wall and protrude both into the oesophageal lumen and from the serosal surface. We observed two major types of lesions: large ulcerated, active granulomas, consisting of a central cavity containing a single or multiple live worms; and many smaller chronic fibrous submucosal nodules. Small, identifiable but attenuated, worms and degenerate worm fragments were identified within some chronic nodules. Co-infection of the posterior oesophagus of the same Naso species with Lecithocladium chingi was common. L. chingi is redescribed from N. annulatus, N. brevirostris, N. tuberosus and A vlamingii. Unlike L. invasor n.sp., L. chingi was not associated with significant lesions. The different pathenogenicity of the two species in acanthurid fish is discussed.
Resumo:
Culverts are among the most common hydraulic structures. Modern designs do not differ from ancient structures and are often characterised by significant afflux at design flows. A significant advance was the development of the Minimum Energy Loss (MEL) culverts in the late 1950s. The design technique allows a drastic reduction in upstream flooding associated with lower costs. The development and operational performances of this type of structure is presented. The successful operation of MEL culverts for more than 40 years is documented with first-hand records during and after floods. The experiences demonstrate the design soundness while highlighting the importance of the hydraulic expertise of the design engineers.
Resumo:
FILTER is an innovative, CSIRO developed system for treating effluent using high rate land application and subsequent effluent recapture via a closely spaced, subsurface drainage network. We report on the summer performance of a FILTER system established in a subtropical environment on a relatively impermeable swelling clay soil underlain by a deep regional water table. Using secondary treated sewage effluent, the FILTER system produced effluent of tertiary nutrient standards (less than or equal to5 mg/L TN; less than or equal to1 mg/L TP), with salinity levels suitable for subsequent irrigation reuse (EC less than or equal to2.5 dS/m). Removal of faecal coliforms was considerably less effective. The hydraulic loading rate achieved was about two and a half times larger than conventional irrigation demand, but this was associated with high deep percolation losses (e 3 mm/day). Comparisons are made with the original FILTER system developed and tested by Jayawardane et al. in temperate Australia. Suggestions are made for modifications to, and further testing of FILTER in a subtropical environment.
Resumo:
Soil carbon is a major component of the terrestrial carbon cycle. The soils of the world contain more carbon than the combined total amounts occurring in vegetation and the atmosphere. Consequently, soils are a major reservoir of carbon and an important sink. Because of the relatively long period of time that carbon spends within the soil and is thereby withheld from the atmosphere, it is often referred to as being sequestered. Increasing the capacity of soils to sequester C provides a partial, medium-term countermeasure to help ameliorate the increasing CO2 levels in the atmosphere arising from fossil fuel burning and land clearing. Such action will also help to alleviate the environmental impacts arising from increasing levels of atmospheric CO2. The C sequestration potential of any soil depends on its capacity to store resistant plant components in the medium term and to protect and accumulate the humic substances (HS) formed from the transformations or organic materials in the soil environment. The sequestration potential of a soil depends on the vegetation it supports, its mineralogical composition, the depth of the solum, soil drainage, the availability of water and air, and the temperature of the soil environment. The sequestration potential also depends on the chemical characteristics of the soil organic matter and its ability to resist microbial decomposition. When accurate information for these features is incorporated in model systems, the potentials of different soils to sequester C can be reliably predicted. It is encouraging to know that improved soil and crop management systems now allow field yields to be maintained and soil C reserves to be increased, even for soils with depleted levels of soil C. Estimates of the soil C sequestration potential are discussed. Inevitably HS are the major components of the additionally sequestered C. It will be important to know more about the compositions and associations of these substances in the soil if we are able to predict reasonably accurately the ability of any soil type to sequester C in different cropping and soil management systems.
Resumo:
Due to the socio-economic inhomogeneity of communities in developing countries, the selection of sanitation systems is a complex task. To assist planners and communities in assessing the suitability of alternatives, the decision support system SANEX™ was developed. SANEX™ evaluates alternatives in two steps. First, Conjunctive Elimination, based on 20 mainly technical criteria, is used to screen feasible alternatives. Subsequently, a model derived from Multiattribute Utility Technique (MAUT) uses technical, socio-cultural and institutional criteria to compare the remaining alternatives with regard to their implementability and sustainability. This paper presents the SANEX™ algorithm, examples of its application in practice, and results obtained from field testing.
Resumo:
This is the first documented study of the anatomical details of the contents of the normal koala orbit, excluding the bulbus oculi. Baseline data were established which are necessary for understanding and treating ocular disease in the koala (Phascolarctos cinereus). The anatomy of the orbital contents of the koala were examined and described from animals that presented dead or were euthanized for humane reasons. Dissections of the orbital cavity were performed under magnification. Polymethyl methacrylate (PMMA) casts of the nasolacrimal system and the vascular supply of the orbit were also made in order to study these systems. The superficial lymphatic drainage of the conjunctival tissues was studied by subcutaneous injection of Evan's Blue into the palpebral conjunctiva of a freshly deceased animal, and by Microfil casts of the efferent lymphatics. In general, the orbital contents of the koala are consistent with those of other carnivorous polyprotodont and herbivorous diprotodont marsupials.
Resumo:
Along with material characteristics and geometry, the climate in which a mine is located can have a dramatic effect on the appropriate options for rehabilitation. The paper outlines the setting, mining, milling and waste disposal at Kidston Gold Mine's open pit operations in the semi-arid climate of North Queensland, Australia, before focusing on the engineering aspects of the rehabilitation of Kidston. The mine took a holistic and proactive approach to rehabilitation, and was prepared to demonstrate a number of innovative approaches, which are described in the paper. Engineering issues that had to be addressed included the geotechnical stability and deformation of waste rock dumps, including a 240 m high in-pit dump: the construction and performance monitoring of a “store and release” cover over potentially acid forming mineralised waste rock; erosion from the side slopes of the waste rock dumps; the in-pit co-disposal of waste rock and thickened tailings; the geotechnical stability of the tailings dam wall; the potential for erosion of bare tailings; the water balance of the tailings dam; direct revegetation of the tailings; and the pit hydrology. The rehabilitation of the mine represents an important benchmark in mine site rehabilitation best practice, from which lessons applicable worldwide can be shared.
Resumo:
This study details the novel application of predacious copepods, genus Mesocyclops, for control of Ochlerotatus tremulus (Theobald) group and Aedes aegypti (L.) mosquito larvae in subterranean habitats in north Queensland, Australia. During June 1997, 50 Mesocyclops sp. I were inoculated into one service manhole in South Townsville. Wet season rainfall and flooding in both 1998 and 2000 was responsible for the dispersal of copepods via the underground pipe system to 29 of 35 manholes over an area of 1.33 km(2). Significant reductions in Aedes and Ochlerotatus larvae ensued. In these habitats, Mesocyclops and Metacyclops were able to survive dry periods, when substrate moisture content ranged from 13.8 to 79.9%. At the semiarid inland towns of Hughenden and Richmond, cracking clay soil prevents drainage of water from shallow service pits where Oc. tremulus immatures numbered from 292-18,460 per pit. Introduction of Mesocyclops copepods into these sites during May 1999 resulted in 100% control of Oc. tremulus for 18 mo. One uninoculated pit subsequently became positive for Mesocyclops with resultant control of mosquito larvae.
Resumo:
Low concentrate density from wet drum magnetic separators in dense medium circuits can cause operating difficulties due to inability to obtain the required circulating medium density and, indirectly, high medium solids losses. The literature is almost silent on the processes controlling concentrate density. However, the common name for the region through which concentrate is discharged-the squeeze pan gap-implies that some extrusion process is thought to be at work. There is no model of magnetics recovery in a wet drum magnetic separator, which includes as inputs all significant machine and operating variables. A series of trials, in both factorial experiments and in single variable experiments, was done using a purpose built rig which featured a small industrial scale (700 mm lip length, 900 turn diameter) wet drum magnetic separator. A substantial data set of 191 trials was generated in this work. The results of the factorial experiments were used to identify the variables having a significant effect on magnetics recovery. It is proposed, based both on the experimental observations of the present work and on observations reported in the literature, that the process controlling magnetic separator concentrate density is one of drainage. Such a process should be able to be defined by an initial moisture, a drainage rate and a drainage time, the latter being defined by the volumetric flowrate and the volume within the drainage zone. The magnetics can be characterised by an experimentally derived ultimate drainage moisture. A model based on these concepts and containing adjustable parameters was developed. This model was then fitted to a randomly chosen 80% of the data, and validated by application to the remaining 20%. The model is shown to be a good fit to data over concentrate solids content values from 40% solids to 80% solids and for both magnetite and ferrosilicon feeds. (C) 2003 Elsevier Science B.V. All rights reserved.