56 resultados para T helper 1 immune response
Resumo:
Background: Susceptibility to periodontal infections may, in part, be genetically determined. Porphyromonas gingivalis is a major periodontopathogen, and the immune response to this organism requires T-cell help. The aim of the present study was to examine the specific T-cell cytokine responses to P gingivalis outer membrane antigens in a mouse model and their relationship with H-2 haplotype. Methods: BALB/c and DBA/2J (H-2(d)), CBACaH (H-2(k)), and C57BL6 (H-2(b)) mice were immunized with P gingivalis outer membrane antigens weekly for 3 weeks. One week after the final injection, the spleens were removed, and 6 T-cell lines specific for P gingivalis were established for each mouse strain. The percentage of CD4 and CD8 cells in the P gingivalis-specific T-cell lines staining positive for intracytoplasmic interleukin (IL)-4, interferon (IFN)-gamma, and IL-10 was determined by 2-color flow cytometry. Results: The cytokine profiles of T-cell lines from BALB/c and DBA/2J mice showed no significant differences. Significantly fewer IL4+, IFN-gamma+, and IL-10+ CD4 cells than IL-4+, IFN-gamma+, and IL-10+ CD8 cells, respectively, were demonstrated for both strains. P gingivalis-specific T-cell lines generated from CBACaH mice were similar to those generated from BALB/c and DBA/2J mice; however, the mean percentage of IL4+ CD4 cells in CBACaH mice was lower than the percentage of IFN-gamma+ CD4 cells. Also, the mean percentage of IFN-gamma+ CD4 cells in CBACaH mice was significantly increased compared to DBA/2J mice. Unlike the other 3 strains, T-cell lines established from C57BL6 mice contained similar percentages of cytokine-positive cells, although the percentage of IL-4+ CD4 cells was reduced in comparison to the percentage of CD8 cells. However, comparisons with the other 3 strains demonstrated a higher percentage of IL-4+ CD4 cells than in lines established from the spleens of DBA/2J mice, IFN-gamma+ CD4 cells than in lines established from BALB/c and CBACaH mice, and IL-10+ CD4 cells than in lines established from all 3 other strains. No significant differences in the percentage of positive CD8 cells were demonstrated between lines in the 4 strains of mice. Conclusion: The specific T-cell response to P gingivalis in mice may, in the case of the CD4 response, depend on MHC genes. These findings are consistent with the concept that patient susceptibility is important to the outcome of periodontal infection and may, in part, be genetically determined.
Resumo:
Polynucleotide immunisation with the E7 gene of human papillomavirus (HPV) type 16 induces only moderate levels of immune response, which may in part be due to limitation in E7 gene expression influenced by biased HPV codon usage. Here we compare for expression and immunogenicity polynucleotide expression plasmids encoding wild-type (pWE7) or synthetic codon optimised (pHE7) HPV16 E7 DNA. Cos-1 cells transfected with pHE7 expressed higher levels of E7 protein than similar cells transfected with pW7. C57BL/6 mice and F1 (C57X FVB) E7 transgenic mice immunised intradermally with E7 plasmids produced high levels of anti-E7 antibody. pHE7 induced a significantly stronger E7-specific cytotoxic T-lymphocyte response than pWE7 and 100% tumour protection in C57BL/6 mice, but neither vaccine induced CTL in partially E7 tolerant K14E7 transgenic mice. The data indicate that immunogenicity of an E7 polynucleotide vaccine can be enhanced by codon modification. However, this may be insufficient for priming E7 responses in animals with split tolerance to E7 as a consequence of expression of E7 in somatic cells. (C) 2002 Elsevier Science (USA).
Resumo:
Dendritic cells (DC) have a key role in controlling the immune response, by determining the outcome of antigen presentation to T cells. Through costimulatory molecules and other factors, DC are involved in the maintenance of peripheral tolerance through modulation of the immune response. This modulation occurs both constitutively, and in inflammation, in order to prevent autoimmunity and to control established immune responses. Dendritic cell control of immune responses may be mediated through cytokine or cell-contact dependent mechanisms. The molecular and cellular basis of these controls is being understood at an increasingly more complex level. This understanding is reaching a level at which DC-based therapies for the induction of immune regulation in autoimmunity can be tested in vivo. This review outlines the current state of knowledge of DC in immune tolerance, and proposes how DC might control both T cell responses, and themselves, to prevent autoimmunity and maintain peripheral tolerance.
Resumo:
We investigated the use of mice transgenic for human leucocyte antigen (HLA) A*0201 antigen-binding domains to test vaccines composed of defined HLA A*0201-restricted cytotoxic T-lymphocyte (CTL) epitopes of human papillomavirus (HPV) type 16 E7 oncoprotein. HPV is detected in >90% of cervical carcinomas. HPV16 E7 oncoprotein transforms cells of the uterine cervix and functions as a tumour-associated antigen to which immunotherapeutic strategies may be directed. We report that although the HLA A*0201 E7 epitope peptides function both to prime for E7 CTL responses, and to sensitize target cells for E7-directed CTL killing in situations where antigen processing is not required, the epitopes are not processed out of either endogenously expressed or immunization-introduced E7, by the mouse antigen-processing and presentation machinery. Thus (1) CTL induced by HLA A*0201 peptide immunization killed E7 peptide-pulsed target cells, but did not kill target cells expressing whole E7; (2) immunization with whole E7 protein did not elicit CTL directed to HLA A*0201-restricted E7 CTL epitopes; (3) HLA A*0201-restricted CTL epitopes expressed in the context of a DNA polytope vaccine did not activate E7-specific T cells either in 'conventional' HLA A*0201 transgenic (A2.1K(b) ) mice, or in HHD transgenic mice in which expression of endogenous H-2 class 1 is precluded; and (4) HLA A*0201 E7 peptide epitope immunization was incapable of preventing the growth of an HLA A*0201- and E7-expressing tumour. There are generic implications for the universal applicability of HLA-class 1 transgenic mice for studies of human CTL epitope presentation in murine models of human infectious disease where recognition of endogenously processed antigen is necessary. There are also specific implications for the use of HLA A2 transgenic mice for the development of E7-based therapeutic vaccines for cervical cancer.
Resumo:
The fundamental role of dendritic cells (DC in initiating and directing the primary immune response is well established. Furthermore, it is now accepted that DC may be useful in new vaccination strategies for preventing certain malignant and infectious diseases. As blood DC (BDC physiology differs from that of the DC homologues generated in vitro from monocyte precursors, it is becoming more relevant to consider BDC for therapeutic interventions. Until recently, protocols for the isolation of BDC were laborious and inefficient; therefore, their use for investigative cancer immunotherapy is not widespread. In this study, we carefully documented BDC counts, yields and subsets during apheresis (Cobe Spectra), the initial and essential procedure in creating a BDC isolation platform for cancer immunotherapy. We established that an automated software package (Version 6,0 AutoPBPC) provides an operator-independent reliable source of motionuclear cells (MNC for BDC preparation. Further, we observed that BDC might be recovered in high yields, often greater than 100% relative to the number of circulating BDC predicted by blood volume. An average of 66 million (range, 17-179) BDC per 10-1 procedure were obtained, largely satisfying the needs for immunization. Higher yields were possible on total processed blood volumes of 151. BDC were not activated by the isolation procedure and, more importantly, both BDC subsets (CD11c(+)CD123(low) and CD11c(-)CD123(high)) were equally represented. Finally, we established that the apheresis product could be used for antibody-based BDC immunoselection and demonstrated that fully functional BDC can be obtained by this procedure. (C) 2002 Published by Elsevier Science B.V.
Resumo:
Antibodies have the potential to be therapeutic reagents for malaria. Here we describe the production of a novel phage antibody display library against the C-terminal 19 kDa region of the Plasmodium yoelii YM merozoite surface protein-1 (MSP1(19)). In vivo studies against homologous lethal malaria challenge show an anti-parasite effect in a dose dependent manner, and analysis by plasmon resonance indicates binding to the antigen is comparable to the binding of a protective monoclonal antibody. The data support the lack of a need for any antibody Fc-related function and hold great significance for the development of a therapeutic reagent for malaria. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Although vaccines have widely been regarded as the most cost-effective way to improve public health, for some organisms new technological advances in vaccine design and delivery, incurring additional developmental costs, will be essential. These organisms are typically those for which natural immunity is either slow to develop or does not develop at all. Clearly, such organisms have evolved strategies to evade immune responses and innovative approaches will be required to induce a type of immune response which is both different to that which develops naturally and is effective. This article describes some approaches to develop vaccines for two such organisms (malaria parasites and Streptococcus pyogenes (group A Streptococcus)) that are associated with widespread mortality and morbidity, mostly in the poorest countries of the world. At this stage, the challenges are primarily scientific, but if these hurdles are surmounted then the challenges will become financial ones - developing much needed vaccines for people least able to afford them. (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Streptococcus pyogenes (Group A streptococcus) interacts with host fibronectin via a number of distinct surface components. The streptococcal serum opacity factor (SOF) is a cell-surface protein of S. pyogenes which opalescence of human serum and mediates bacterial binding to fibronectin. In this study, hexahistidyl-tagged fusion proteins encompassing full-length SOF, and domains of SOF encompassing opacity factor activity and fibronectin-binding regions, were used in the characterization of the Aboriginal immune response to SOF. Anti-SOF serum IgG responses were found to be significantly higher (P
Resumo:
Human cytomegalovirus (HCMV) can establish both nonproductive (latent) and productive (lytic) infections. Many of the proteins expressed during these phases of infection could be expected to be targets of the immune response; however, much of our understanding of the CD8(+)-T-cell response to HCMV is mainly based on the pp65 antigen. Very little is known about T-cell control over other antigens expressed during the different stages of virus infection; this imbalance in our understanding undermines the importance of these antigens in several aspects of HCMV disease pathogenesis. In the present study, an efficient and rapid strategy based on predictive bioinformatics and ex vivo functional T-cell assays was adopted to profile CD8(+)-T-cell responses to a large panel of HCMV antigens expressed during different phases of replication. These studies revealed that CD8(+)-T-cell responses to HCMV often contained multiple antigen-specific reactivities, which were not just constrained to the previously identified pp65 or IE-1 antigens. Unexpectedly, a number of viral proteins including structural, early/late antigens and HCMV-encoded immunomodulators (pp28, pp50, gH, gB, US2, US3, US6, and UL18) were also identified as potential targets for HCMV-specific CD8(+)-T-cell immunity. Based on this extensive analysis, numerous novel HCMV peptide epitopes and their HLA-restricting determinants recognized by these T cells have been defined. These observations contrast with previous findings that viral interference with the antigen-processing pathway during lytic infection would render immediate-early and early/late proteins less immunogenic. This work strongly suggests that successful HCMV-specific immune control in healthy virus carriers is dependent on a strong T-cell response towards a broad repertoire of antigens.
Resumo:
Priming to Ag can inhibit subsequent induction of an immune response to a new epitope incorporated into that Ag, a phenomenon referred to as original antigenic sin. In this study, we show that prior immunity to a virus capsid can inhibit subsequent induction of the IFN-gamma effector T cell response to a novel CD8-restricted antigenic epitope associated with the virus capsid. Inhibition does not involve Ab to the virus capsid, as it is observed in animals lacking B cells. CD8-restricted virus-specific T cell responses are not required, as printing to virus without CTL induction is associated with inhibition. However, IL-10(-/-) mice, in contrast to IL-10(+/+) mice, generate CD8 T cell and Ab responses to novel epitopes incorporated into a virus capsid, even when priming to the capsid has resulted in high titer Ab to the capsid. Furthermore, capsid-primed mice, unable to mount a response to a novel epitope in the capsid protein, are nevertheless able to respond to the same novel epitope delivered independently of the capsid. Thus, inhibition of responsiveness to a novel epitope in a virus-primed animal is a consequence of secretion of IL-10 in response to presented Ag, which inhibits local generation of new CD8 IFN-gamma-secreting effector T cells. Induction of virus- or tumor Ag-specific CD8 effector T cells in the partially Ag-primed host may thus be facilitated by local neutralization of IL-10.
Resumo:
Activation of macrophages with lipopolysaccharide (LPS) induces the rapid synthesis and secretion of proinflammatory cytokines, such as tumor necrosis factor (TNFalpha), for priming the immune response [1, 2]. TNFalpha plays a key role in inflammatory disease [3]; yet, little is known of the intracellular trafficking events leading to its secretion. In order to identify molecules involved in this secretory pathway, we asked whether any of the known trafficking proteins are regulated by LPS. We found that the levels of SNARE proteins were rapidly and significantly up- or downregulated during macrophage activation. A subset of t-SNAREs (Syntaxin 4/SNAP23/Munc18c) known to control regulated exocytosis in other cell types [4, 5] was substantially increased by LPS in a temporal pattern coinciding with peak TNFalpha secretion. Syntaxin 4 formed a complex with Munc18c at the cell surface of macrophages. Functional studies involving the introduction of Syntaxin 4 cDNA or peptides into macrophages implicate this t-SNARE in a rate-limiting step of TNFalpha secretion and in membrane ruffling during macrophage activation. We conclude that in macrophages, SNAREs are regulated in order to accommodate the rapid onset of cytokine secretion and for membrane traffic associated with the phenotypic changes of immune activation. This represents a novel regulatory role for SNAREs in regulated secretion and in macrophage-mediated host defense.