51 resultados para Stability of nonlinear systems
Resumo:
Respiration is altered during different stages of the sleep-wake cycle. We review the contribution of cholinergic systems to this alteration, with particular reference to the role of muscarinic acetylcholine receptors (MAchRs) during rapid eye movement (REM) sleep. Available evidence demonstrates that MAchRs have potent excitatory effects on medullary respiratory neurones and respiratory motoneurones, and are likely to contribute to changes in central chemosensitive drive to the respiratory control system. These effects are likely to be most prominent during REM sleep, when cholinergic brainstem neurones show peak activity levels. It is possible that MAchR dysfunction is involved in sleep-disordered breathing, Such as obstructive sleep apnea. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The stability of a steadily propagating planar premixed flame has been the subject of numerous studies since Darrieus and Landau showed that in their model flames are unstable to perturbations of any wavelength. Moreover, the instability was shown to persist even for very small wavelengths, i.e. there was no high-wavenumber cutoff of the instability. In addition to the Darrieus-Landau instability, which results from thermal expansion, analysis of the diffusional thermal model indicates that premixed flames may exhibit cellular and pulsating instabilities as a consequence of preferential diffusion. However, no previous theory captured all the instabilities including a high-wavenumber cutoff for each. In Class, Matkowsky & Klimenko (2003) a unified theory is proposed which, in appropriate limits and under appropriate assumptions, recovers all the relevant previous theories. It also includes additional new terms, not present in previous theories. In the present paper we consider the stability of a uniformly propagating planar flame as a solution of the unified model. The results are then compared to those based on the models of Darrieus-Landau, Sivashinsky and Matalon-Matkowsky. In particular, it is shown that the unified model is the only model to capture the Darrieus-Landau, cellular and pulsating instabilities including a high-wavenumber cutoff for each.
Resumo:
We investigated how the relative direction of limb movements in external space (iso- and non-isodirectionality), muscular constraints (the relative timing of homologous muscle activation) and the egocentric frame of reference (moving simultaneously toward/away the longitudinal axis of the body) contribute to the stability of coordinated movements. In the first experiment, we attempted to determine the respective stability of isodirectional and non-isodirectional movements in between-persons coordination. In a second experiment, we determined the effect of the relative direction in external space, and of muscular constraints, on pattern stability during a within-person bimanual coordination task. In the third experiment we dissociated the effects on pattern stability of the muscular constraints, relative direction and egocentric frame of reference. The results showed that (1) simultaneous activation of homologous muscles resulted in more stable performance than simultaneous activation of non-homologous muscles during within-subject coordination, and that (2) isodirectional movements were more stable than non-isodirectional movements during between-persons coordination, confirming the role of the relative direction of the moving limbs in the stability of bimanual coordination. Moreover, the egocentric constraint was to some extent found distinguishable from the effect of the relative direction of the moving limbs in external space, and from the effect of the relative timing of muscle activation. In summary, the present study showed that relative direction of the moving limbs in external space and muscular constraints may interact either to stabilize or destabilize coordination patterns. (C) 2003 Published by Elsevier B.V.
Resumo:
The authors investigated how the intention to passively perform a behavior and the intention to persist with a behavior impact upon the spatial and temporal properties of bimanual coordination. Participants (N = 30) were asked to perform a bimanual coordination task that demanded the continuous rhythmic extension-flexion of the wrists. The frequency of movement was scaled by an auditory metronome beat from 1.5 Hz, increasing to 3.25 Hz in .25-Hz increments. The task was further defined by the requirement that the movements be performed initially in a prescribed pattern of coordination (in-phase or antiphase) while the participants assumed one of two different intentional states: stay with the prescribed pattern should it become unstable or do not intervene should the pattern begin to change. Transitions away from the initially prescribed pattern were observed only in trials conducted in the antiphase mode of coordination. The time at which the antiphase pattern of coordination became unstable was not found to be influenced by the intentional state. In addition, the do-not-intervene set led to a switch to an in-phase pattern of coordination whereas the stay set led to phase wandering. Those findings are discussed within the framework of a dynamic account of bimanual coordination.
Resumo:
This paper conducts a dynamic stability analysis of symmetrically laminated FGM rectangular plates with general out-of-plane supporting conditions, subjected to a uniaxial periodic in-plane load and undergoing uniform temperature change. Theoretical formulations are based on Reddy's third-order shear deformation plate theory, and account for the temperature dependence of material properties. A semi-analytical Galerkin-differential quadrature approach is employed to convert the governing equations into a linear system of Mathieu-Hill equations from which the boundary points on the unstable regions are determined by Bolotin's method. Free vibration and bifurcation buckling are also discussed as subset problems. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with FGM layers made of silicon nitride and stainless steel. The influences of various parameters such as material composition, layer thickness ratio, temperature change, static load level, boundary constraints on the dynamic stability, buckling and vibration frequencies are examined in detail through parametric studies.