125 resultados para Spring Web Flow
Resumo:
Predictions of water table fluctuations in coastal aquifers are needed for numerous coastal and water resources engineering problems. Most previous investigations have been based on the Boussinesq equation for the case of a vertical beach. In this note an analytical solution based on shallow water expansion for the spring- neap tide- induced water table fluctuations in a coastal aquifer is presented. Unlike most previous investigations, multitidal signals are considered with a sloping coastal aquifer. The new solution is verified by comparing with field observations from Ardeer, Scotland. On the basis of the analytical approximation the influences of higher- order components on water table elevation are examined first. Then, a parametric study has been performed to investigate the effects of the amplitude ratio (lambda), frequency ratio (omega), and phases (delta(1) and delta(2)) on the tide- induced water table fluctuations in a sloping sandy beach.
Resumo:
This paper presents field measurements and numerical simulations of groundwater dynamics in the intertidal zone of a sandy meso-tidal beach. The study, focusing on vertical hydraulic gradients and pore water salinities, reveals that tides and waves provide important forcing mechanisms for flow and salt transport in the nearshore aquifer. Such forcing, interacting with the beach morphology, enhances the exchange between the aquifer and ocean. The spatial and temporal variations of vertical hydraulic gradients demonstrate the complexity and dynamic nature of the processes and the extent of mixing between fresh groundwater and seawater in a subterranean estuary''. These results provide evidence of a potentially important reaction zone in the nearshore aquifer driven by oceanic oscillations. Land-derived contaminants may undergo important biogeochemical transformations in this zone prior to discharge.
Resumo:
Numerical methods are used to simulate the double-diffusion driven convective pore-fluid flow and rock alteration in three-dimensional fluid-saturated geological fault zones. The double diffusion is caused by a combination of both the positive upward temperature gradient and the positive downward salinity concentration gradient within a three-dimensional fluid-saturated geological fault zone, which is assumed to be more permeable than its surrounding rocks. In order to ensure the physical meaningfulness of the obtained numerical solutions, the numerical method used in this study is validated by a benchmark problem, for which the analytical solution to the critical Rayleigh number of the system is available. The theoretical value of the critical Rayleigh number of a three-dimensional fluid-saturated geological fault zone system can be used to judge whether or not the double-diffusion driven convective pore-fluid flow can take place within the system. After the possibility of triggering the double-diffusion driven convective pore-fluid flow is theoretically validated for the numerical model of a three-dimensional fluid-saturated geological fault zone system, the corresponding numerical solutions for the convective flow and temperature are directly coupled with a geochemical system. Through the numerical simulation of the coupled system between the convective fluid flow, heat transfer, mass transport and chemical reactions, we have investigated the effect of the double-diffusion driven convective pore-fluid flow on the rock alteration, which is the direct consequence of mineral redistribution due to its dissolution, transportation and precipitation, within the three-dimensional fluid-saturated geological fault zone system. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Obesity affects aspects of glucose homeostasis such as insulin secretion and insulin sensitivity. Hormones secreted by adipocytes like leptin mediate the metabolic consequences of obesity. Incretin hormones like glucagon-like peptide-1 (GLP-1) increase insulin secretion in response to changes in blood glucose concentration and have been proposed to regulate insulin secretion in fasting, overweight dogs. The aim of this study was to examine hormonal mechanisms by which adiposity alters glucose homeostasis, plasma insulin concentration, and insulin sensitivity in spontaneously overweight dogs.
Resumo:
PHWAT is a new model that couples a geochemical reaction model (PHREEQC-2) with a density-dependent groundwater flow and solute transport model (SEAWAT) using the split-operator approach. PHWAT was developed to simulate multi-component reactive transport in variable density groundwater flow. Fluid density in PHWAT depends not on only the concentration of a single species as in SEAWAT, but also the concentrations of other dissolved chemicals that can be subject to reactive processes. Simulation results of PHWAT and PHREEQC-2 were compared in their predictions of effluent concentration from a column experiment. Both models produced identical results, showing that PHWAT has correctly coupled the sub-packages. PHWAT was then applied to the simulation of a tank experiment in which seawater intrusion was accompanied by cation exchange. The density dependence of the intrusion and the snow-plough effect in the breakthrough curves were reflected in the model simulations, which were in good agreement with the measured breakthrough data. Comparison simulations that, in turn, excluded density effects and reactions allowed us to quantify the marked effect of ignoring these processes. Next, we explored numerical issues involved in the practical application of PHWAT using the example of a dense plume flowing into a tank containing fresh water. It was shown that PHWAT could model physically unstable flow and that numerical instabilities were suppressed. Physical instability developed in the model in accordance with the increase of the modified Rayleigh number for density-dependent flow, in agreement with previous research. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, experiments to detect turbulent spots in the transitional boundary layers, formed on a flat plate in a free-piston shock tunnel how, are reported. Experiments indicate that thin-film heat-transfer gauges are suitable for identifying turbulent-spot activity and can be used to identify parameters such as the convection rate of spots and the intermittency of turbulence.
Resumo:
Fluid mixing in steady and unsteady Bow through a channel containing periodic square obstructions has been studied using a finite-difference simulation to determine fluid velocities, followed by the use of passive marker particle advection to look at fluid transport out of the cavities formed between each of the obstructions. The geometry and Bow conditions were chosen from the work by Perkins (1989, M.S. Thesis, Lehigh University; 1992, Ph.D. Thesis, Lehigh University); who investigated heat transfer enhancement due to unsteady flow through such an obstructed channel. Particle advection shows that Bow regimes which are predicted to give good mixing based on snapshots of instantaneous streamline contour plots were not necessarily able to efficiently mix fluid which started in the cavity regions throughout the channel. The use of Poincare sections shows regular regions existing under these conditions which inhibit efficient fluid transport. These regular regions are found to disappear when the unsteady Bow velocity is increased. (C) 1997 Elsevier Science Ltd.
Resumo:
Current design procedures for Subsurface Flow (SSF) Wetlands are based on the simplifying assumptions of plug flow and first order decay of pollutants. These design procedures do yield functional wetlands but result in over-design and inadequate descriptions of the pollutant removal mechanisms which occur within them. Even though these deficiencies are often noted, few authors have attempted to improve modelling of either flow or pollutant removal in such systems. Consequently the Oxley Creek Wetland, a pilot scale SSF wetland designed to enable rigorous monitoring, has recently been constructed in Brisbane, Australia. Tracer studies have been carried out in order to determine the hydraulics of this wetland prior to commissioning it with sealed sewage. The tracer studies will continue during the wetland's commissioning and operational phases. These studies will improve our understanding of the hydraulics of newly built SSF wetlands and the changes brought on by operational factors such as biological films and wetland plant root structures. Results to date indicate that the flow through the gravel beds is not uniform and cannot be adequately modelled by a single parameter, plug flow with dispersion, model. We have developed a multiparameter model, incorporating four plug flow reactors, which provides a better approximation of our experimental data. With further development this model will allow improvements to current SSF wetland design procedures and operational strategies, and will underpin investigations into the pollutant removal mechanisms at the Oxley Creek Wetland. (C) 1997 IAWQ. Published by Elsevier Science Ltd.
Resumo:
A family of potent insecticidal toxins has recently been isolated from the venom of Australian funnel web spiders. Among these is the 37-residue peptide omega-atracotoxin-HV1 (omega-ACTX-HV1) from Hadronyche versuta. We have chemically synthesized and folded omega-ACTX-HV1, shown that it is neurotoxic, ascertained its disulphide bonding pattern, and determined its three-dimensional solution structure using NMR spectroscopy. The structure consists of a solvent-accessible beta-hairpin protruding from a disulphide-bonded globular core comprising four beta-turns. The three intramolecular disulphide bonds form a cystine knot motif similar to that seen in several other neurotoxic peptides. Despite limited sequence identity, omega-ACTX-HV1 displays significant structural homology with the omega-agatoxins and omega-conotoxins, both of which are vertebrate calcium channel antagonists; however, in contrast with these toxins, we show that omega-ACTX-HV1 inhibits insect, but not mammalian, voltage-gated calcium channel currents.
Resumo:
Systems approaches can help to evaluate and improve the agronomic and economic viability of nitrogen application in the frequently water-limited environments. This requires a sound understanding of crop physiological processes and well tested simulation models. Thus, this experiment on spring wheat aimed to better quantify water x nitrogen effects on wheat by deriving some key crop physiological parameters that have proven useful in simulating crop growth. For spring wheat grown in Northern Australia under four levels of nitrogen (0 to 360 kg N ha(-1)) and either entirely on stored soil moisture or under full irrigation, kernel yields ranged from 343 to 719 g m(-2). Yield increases were strongly associated with increases in kernel number (9150-19950 kernels m(-2)), indicating the sensitivity of this parameter to water and N availability. Total water extraction under a rain shelter was 240 mm with a maximum extraction depth of 1.5 m. A substantial amount of mineral nitrogen available deep in the profile (below 0.9 m) was taken up by the crop. This was the source of nitrogen uptake observed after anthesis. Under dry conditions this late uptake accounted for approximately 50% of total nitrogen uptake and resulted in high (>2%) kernel nitrogen percentages even when no nitrogen was applied,Anthesis LAI values under sub-optimal water supply were reduced by 63% and under sub-optimal nitrogen supply by 50%. Radiation use efficiency (RUE) based on total incident short-wave radiation was 1.34 g MJ(-1) and did not differ among treatments. The conservative nature of RUE was the result of the crop reducing leaf area rather than leaf nitrogen content (which would have affected photosynthetic activity) under these moderate levels of nitrogen limitation. The transpiration efficiency coefficient was also conservative and averaged 4.7 Pa in the dry treatments. Kernel nitrogen percentage varied from 2.08 to 2.42%. The study provides a data set and a basis to consider ways to improve simulation capabilities of water and nitrogen effects on spring wheat. (C) 1997 Elsevier Science B.V.
Resumo:
The financial and economic analysis of investment projects is typically carried out using the technique of discounted cash flow (DCF) analysis. This module introduces concepts of discounting and DCF analysis for the derivation of project performance criteria such as net present value (NPV), internal rate of return (IRR) and benefit to cost (B/C) ratios. These concepts and criteria are introduced with respect to a simple example, for which calculations using MicroSoft Excel are demonstrated.