58 resultados para Spinal cord injury(SCI)
Resumo:
This study examined if brain pathways in morphine-dependent rats are activated by opioid withdrawal precipitated outside the central nervous system. Withdrawal precipitated with a peripherally acting quaternary opioid antagonist (naloxone methiodide) increased Fos expression but caused a more restricted pattern of neuronal activation than systemic withdrawal (precipitated with naloxone which enters the brain). There was no effect on locus coeruleus and significantly smaller increases in Fos neurons were produced in most other areas. However in the ventrolateral medulla (A1/C1 catecholamine neurons), nucleus of the solitary tract (A2/C2 catecholamine neurons), lateral parabrachial nucleus, supramamillary nucleus, bed nucleus of the stria terminalis. accumbens core and medial prefrontal cortex no differences in the withdrawal treatments were detected. We have shown that peripheral opioid withdrawal can affect central nervous system pathways. Crown Copyright (C) 2001 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
1. Recent findings have suggested a significant involvement of the immune system in the control of pain. Immune cells contain opioid peptides that are released within inflamed tissue and act at opioid receptors on peripheral sensory nerve endings. It is also apparent that different types of lymphocytes contain P-endorphin, memory T cells containing more beta -endorphin than naive cells. 2. These findings highlight an integral link between immune cell migration and inflammatory pain, The present review highlights immune system involvement in the site-directed control of inflammatory pain. 3. Full-length mRNA transcripts for opioid precursor proteins are expressed in immune cells. Increased expression of pro-opiomelanocortin mRNA and beta -endorphin has been demonstrated in stimulated lymphocytes and lymphocytes from animals with inflammation. 4. Cytokines and corticotropin-releasing factor (CRF) release opioids from immune cells, Potent peripheral analgesia due to direct injection of CRF can be blocked by antagonists to CRF, antibodies to opioid peptides, antisense to CRF and opioid receptor-specific antagonists. The release of opioid peptides from lymphocytes is calcium dependent and opioid receptor specific. Furthermore, endogenous sources of opioid peptides produce potent analgesia when implanted into the spinal cord. 5. Activated immune cells migrate directly to inflamed tissue using cell adhesion molecules to adhere to the epithelial surface of the vasculature in inflamed tissue. Lymphocytes that have been activated can express opioid peptides, Memory type T cells that contain opioid peptides are present within inflamed tissue; naive cells are not present in inflamed tissue and do not contain opioid peptides, Inhibiting the migration of memory type T cells into inflamed tissue by blocking selectins results in reduced numbers of beta -endorphin containing cells, a reduced quantity of beta -endorphin in inflamed paws and reduced stress- and CRF-induced peripheral analgesia. 6. Immunosuppression is associated with increased pain in patients. Moreover, immunosuppression results in decreased lymphocyte numbers as well as decreased analgesia in animal models.
Resumo:
Slit is expressed in the midline of the central nervous system both in vertebrates and invertebrates. In Drosophila, it is the midline repellent acting as a ligand for the Roundabout (Robo) protein, the repulsive receptor which is expressed on the growth cones of the commissural neurons. We have isolated cDNA fragments of the zebrafish slit2 and slit3 homologues and found that both genes start to be expressed by the midgastrula stage well before the axonogenesis begins in the nervous system, both in the axial mesoderm, and slit2 in the anterior margin of the neural plate and slit3 in the polster at the anterior end of the prechordal mesoderm. Later, expression of slit2 mRNA is detected mainly in midline structures such as the floor plate cells and the hypochord, and in the anterior margins of the neural plates in the zebrafish embryo, while slit3 expression is observed in the anterior margin of the prechordal plate, the floorplate cells in the hindbrain, and the motor neurons both in the hindbrain and the spinal cord. To study the role of Slit in early embryos, we overexpressed Slit2 in the whole embryos either by injection of its mRNA into one-cell stage embryos or by heat-shock treatment of the transgenic embryos which carries the slit2 gene under control of the heat-shock promoter. Overexpression of Slit2 in such ways impaired the convergent extension movement of the mesoderm and the rostral migration of the cells in the dorsal diencephalon and resulted in cyclopia. Our results shed light on a novel aspect of Slit function as a regulatory factor of mesodermal cell movement during gastrulation. (C) 2001 Academic Press.
Resumo:
Inhibition of programmed cell death of motoneurons during embryonic development requires the presence of their target muscle and coincides with the initial stages of synaptogenesis. To evaluate the role of synapse formation on motoneuron survival during embryonic development, we counted the number of motoneurons in rapsyn-deficient mice. RaDsyn is a 43 kDa protein needed for the formation of postsynaptic specialisations at vertebrate neuromuscular synapses. Here we show that the rapsyn-deficient mice have a significant increase in the number of motoneurons in the brachial lateral motor column during the period of naturally occurring programmed cell death compared to their wild-type littermates. In addition, we observed an increase in intramuscular axonal branching in the rapsyn-deficient diaphragms compared to their wild-type littermates at embryonic day 18.5. These results suggest that deficits in the formation of the postsynaptic specialisation at the neuromuscular synapse, brought about by the absence of rapsyn, are sufficient to induce increases in both axonal branching and the survival of the innervating motoneuron. Moreover, these results support the idea that skeletal muscle activity through effective synaptic transmission and intramuscular axonal branching are major mechanisms that regulate motoneuron survival during development. (C) 2001 Wiley-Liss, Inc.
Resumo:
The Eph family of receptor tyrosine kinases and their ligands, the ephrins, are important regulators of axon guidance and cell migration in the developing nervous system. Inactivation of the EphA4 gene results in axon guidance defects of the corticospinal tract, a major descending motor pathway that originates in the cortex and terminates at all levels of the spinal cord. In this investigation, we report that although the initial development of the corticospinal projection is normal through the cortex, internal capsule, cerebral peduncle, and medulla in the brain of EphA4 deficient animals, corticospinal axons exhibit gross abnormalities when they enter the gray matter of the spinal cord. Notably, many corticospinal axons fail to remain confined to one side of the spinal cord during development and instead, aberrantly project across the midline, terminating ipsilateral to their cells of origin. Given the possible repulsive interactions between EphA4 and one of its ligands, ephrinB3, this defect could be consistent with a loss of responsiveness by corticospinal axons to ephrinB3 that is expressed at the spinal cord midline. Furthermore, we show that EphA4 deficient animals exhibit ventral displacement of the mature corticospinal termination pattern, suggesting that developing corticospinal axons, which may also express ephrinB3, fail to be repelled from areas of high EphA4 expression in the intermediate zone of the normal spinal cord. Taken together, these results suggest that the dual expression of EphA4 on corticospinal axons and also within the surrounding gray matter is very important for the correct development and termination of the corticospinal projection within the spinal cord. J. Comp. Neurol. 436: 248-262, 2001. (C) 2001 Wiley-Liss, Inc.
Resumo:
The zebrafish has a number of distinct advantages as an experimental model in developmental biology. For example, large numbers of embryos can be generated in each lay, development proceeds rapidly through a very precise temporal staging which exhibits minimal batch-to-batch variability, embryos are transparent and imaging of wholemounts negates the need for tedious histological preparation while preserving three-dimensional spatial relationships. The zebrafish nervous system is proving a convenient model for studies of axon guidance because of its small size and highly stereotypical trajectory of axons. Moreover, a simple scaffold of axon tracts and nerves is established early and provides a template for subsequent development. The ease with which this template can be visualized as well as the ability to spatially resolve individual pioneer axons enables the role of specific cell-cell and molecular interactions to be clearly deciphered. We describe here the morphology and development of the earliest axon pathways in the embryonic zebrafish central nervous system and highlight the major questions that remain to be addressed with regard to axon guidance.
Resumo:
hlx1 is a related homeobox gene expressed in a dynamic spatiotemporal expression pattern during development of the zebrafish brain. The homologues of hlx1, mouse dbx1 and Xenopus Xdbx, are known to play a role in the specification of neurons in the spinal cord. However, the role of these molecules in the brain is less well known. We have used two different approaches to elucidate a putative function for hlx1 in the developing zebrafish brain. Blastomeres were injected with either synthetic hlx1 mRNA in gain-of-function experiments or with antisense morpholino oligonucleotides directed against hlx1 in loss-of-function experiments. Mis-expression of hlx1 produced severe defects in brain morphogenesis as a result of abnormal ventricle formation, a phenotype we referred to as fused-brain. These animals also showed a reduction in the size of forebrain neuronal clusters as well as abnormal axon pathfinding. hlx1 antisense morpholinos specifically perturbed hindbrain morphogenesis leading to defects in the integrity of the neuroepithelium. While hindbrain patterning was in the most part unaffected there were select disruptions to the expression pattern of the neurogenic gene Zash1B in specific rhombomeres. Our results indicate multiple roles for hlx1 during zebrafish brain morphogenesis.
Resumo:
Granulomatous meningoencephalomyelitis (GME) is a morphological description of an inflammatory disorder of the canine central nervous system (CNS). It has been reported in many areas of the world. including Australia, and is one of the more common nervous disorders of dogs. Most breeds of dogs of both sexes and all ages can be affected but young to middle-aged small and terrier breeds have been stated as being more susceptible. There are variable anatomical forms and distribution of the lesions in the CNS; the presenting clinical signs can reflect singly or collectively cerebellar, cerebral, and brain stem dysfunction. Meningeal and spinal cord involvement are also common. There is no specific diagnostic test but a combination of clinical signs, history and cerebro-spinal fluid cytology are useful indicators. However differential diagnosis from other inflammatory disorders of the brain is difficult. No infectious agent aetiology has been established for GME and therefore no satisfactory therapeutic approach is available. The role of the immune system in terms of either initiating or potentiating the lesions in the CNS appears to be the most likely direction for further investigation into the nature of this disorder.
Resumo:
Approximately half of the motoneurons generated during normal embryonic development undergo programmed cell death. Most of this death occurs during the time when synaptic connections are being formed between motoneurons and their target, skeletal muscle. Subsequent muscle activity stemming from this connection helps determine the final number of surviving motoneurons. These observations have given rise to the idea that motoneuron survival is dependent upon access to muscle derived trophic factors, presumably through intact neuromuscular synapses. However, it is not yet understood how the muscle regulates the supply of such trophic factors, or if there are additional mechanisms operating to control the fate of the innervating motoneuron. Recent observations have highlighted target independent mechanisms that also operate to support the survival of motoneurons, such as early trophic-independent periods of motoneuron death, trophic factors derived from Schwann cells and selection of motoneurons during pathfinding. Here we review recent investigations into motoneuron cell death when the molecular signalling between motoneurons and muscle has been genetically disrupted. From these studies, we suggest that in addition to trophic factors from muscle and/or Schwann cells, specific adhesive interactions between motoneurons and muscle are needed to regulate motoneuron survival. Such interactions, along with intact synaptic basal lamina, may help to regulate the supply and presentation of trophic factors to motoneurons.
Resumo:
The present study employs choline acetyltransferase (ChAT) immunohistochemistry to identify the cholinergic neuronal population in the central nervous system of the monotremes. Two of the three extant species of monotreme were studied: the platypus (Omithorhynchus anatinus) and the short-beaked echidna (Tachyglossus aculeatus). The distribution of cholinergic cells in the brain of these two species was virtually identical. Distinct groups of cholinergic cells were observed in the striatum, basal forebrain, habenula, pontomesencephalon, cranial nerve motor nuclei, and spinal cord. In contrast to other tetrapods studied with this technique, we failed to find evidence for cholinergic cells in the hypothalamus, the parabigeminal nucleus (or nucleus isthmus), or the cerebral cortex. The lack of hypothalamic cholinergic neurons creates a hiatus in the continuous antero-posterior aggregation of cholinergic neurons seen in other tetrapods. This hiatus might be functionally related to the phenomenology of monotreme sleep and to the ontogeny of sleep in mammals, as juvenile placental mammals exhibit a similar combination of sleep elements to that found in adult monotremes. Copyright (C) 2002 S. Karger AG, Basel.
Resumo:
Background: The heavy usage of coxibs in Australia far outstrips the predicted usage that was based on the treatment of patients with risk factors for upper gastro-intestinal adverse events from conventional anti--inflammatory agents. This raises questions regarding the appropriateness of prescribing. Aims: To determine: (i) the relationship between prescriptions for cyclooxygenase 2 (COX-2) inhibitors and objective evidence of inflammatory arthritis, (ii) prior experience with paracetamol and/or conventional non-steroidal anti-inflammatory drugs (NSAIDs), and (iii) contraindications to the use of NSAIDs. Methods: Drug utilization evaluation and rheumato-logical assessment was conducted on 70 consecutive patients admitted on COX-2 inhibitors to a 480-bed metropolitan hospital. The main outcome measures were: the indication for COX-2 inhibitor; objective -evidence of inflammatory arthritis; previous trial of -paracetamol or conventional NSAIDs; and patient -satisfaction. Results: Only 11 patients (16%) had symptoms or signs of an inflammatory arthropathy, and met Pharmaceut-ical Benefits Schedule criteria for prescribing a COX-2 inhibitor. Fifty-nine patients (84%) had chronic osteo-arthritis, degenerative spinal disease, injury or malignancy, without overt active inflammation. Fourteen patients (20%) had trialled regular paracetamol prior to using any NSAID treatment. Conventional NSAIDs had been previously used by 51 patients (73%). Eleven patients (16%) reported previous adverse gastrointestinal effects from conventional NSAIDs. On the basis of significant renal impairment (creatinine clearance 5/10). Conclusions: Drug utilization data indicate that COX-2 inhibitors are frequently used first line for degenerative osteoarthritis in the absence of overt inflammation, without prior adequate trial of paracetamol and with disregard for the cautions and contraindications of these agents. These findings may explain the unprecedented Pharmaceutical Benefits Schedule expenditure on COX-2 inhibitors in Australia.
Resumo:
In the rodent central nervous system (CNS) during the five days prior to birth, both growth hormone (GH) and its receptor (GHR) undergo transient increases in expression to levels considerably higher than those found postnatally. This increase in expression coincides with the period of neuronal programmed cell death (PCD) in the developing CNS. To evaluate the involvement of growth hormone in the process of PCD, we have quantified the number of motoneurons in the spinal cord and brain stem of wild type and littermate GHR-deficient mice at the beginning and end of the neuronal PCD period. We found no change in motoneuron survival in either the brachial or lumbar lateral motor columns of the spinal cord or in the trochlear, trigeminal, facial or hypoglossal nuclei in the brain stem. We also found no significant differences in spinal cord volume, muscle fiber diameter, or body weight of GHR-deficient fetal mice when compared to their littermate controls. Therefore, despite considerable in vitro evidence for GH action on neurons and glia, genetic disruption of GHR signalling has no effect on prenatal motoneuron number in the mouse, under normal physiological conditions. This may be a result of compensation by the signalling of other neurotrophic cytokines.
Resumo:
Experimental antoimmune encephalomyelitis (EAE) is an organ-specific autoimmune disease characterised by inflammation and demyelination of the central nervous system and is the best available animal model of multiple sclerosis (MS). Since previous studies have shown that EAE is less severe or is delayed in onset during pregnancy and that administration of the pregnancy hormone early pregnancy factor (EPF) down-regulates EAE, experiments in the present study were designed to explore further the role of EPF in EAE. By using the rosette inhibition test, the standard bioassay for EPF and, by semi-quantitative RT-PCR techniques, we have now shown that inflammatory cells from the spinal cord of rats with EAE can produce and secrete EPF, with production being greatest during recovery from disease. Administration of EPF to rats with EAE resulted in a significant increase in the expression of IL-4 and IL-10 mRNA and a significant decrease in IFN-gamma mRNA expression in spinal cord inflammatory cells. Encephalitogenic MBP-specific T cell lines were prepared from popliteal lymph nodes of rats with EAE. Proliferation assays using these cells demonstrated the ability of exogenous EPF to down-regulate the responses of T lymphocytes to MBP. (C) 2003 Elsevier B.V. All rights reserved.