50 resultados para Spatial Data Infrastructures (SDI)
Resumo:
Observations of an insect's movement lead to theory on the insect's flight behaviour and the role of movement in the species' population dynamics. This theory leads to predictions of the way the population changes in time under different conditions. If a hypothesis on movement predicts a specific change in the population, then the hypothesis can be tested against observations of population change. Routine pest monitoring of agricultural crops provides a convenient source of data for studying movement into a region and among fields within a region. Examples of the use of statistical and computational methods for testing hypotheses with such data are presented. The types of questions that can be addressed with these methods and the limitations of pest monitoring data when used for this purpose are discussed. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Most sugarcane breeding programs in Australia use large unreplicated trials to evaluate clones in the early stages of selection. Commercial varieties that are replicated provide a method of local control of soil fertility. Although such methods may be useful in detecting broad trends in the field, variation often occurs on a much smaller scale. Methods such as spatial analysis adjust a plot for variability by using information from immediate neighbours. These techniques are routinely used to analyse cereal data in Australia and have resulted in increased accuracy and precision in the estimates of variety effects. In this paper, spatial analyses in which the variability is decomposed into local, natural, and extraneous components are applied to early selection trials in sugarcane. Interplot competition in cane yield and trend in sugar content were substantial in many of the trials and there were often large differences in the selections between the spatial and current method used by the Bureau of Sugar Experiment Stations. A joint modelling approach for tonnes sugar per hectare in response to fertility trends and interplot competition is recommended.
Resumo:
Spatial and temporal variability in wheat production in Australia is dominated by rainfall occurrence. The length of historical production records is inadequate, however, to analyse spatial and temporal patterns conclusively. In this study we used modelling and simulation to identify key spatial patterns in Australian wheat yield, identify groups of years in the historical record in which spatial patterns were similar, and examine association of those wheat yield year groups with indicators of the El Nino Southern Oscillation (ENSO). A simple stress index model was trained on 19 years of Australian Bureau of Statistics shire yield data (1975-93). The model was then used to simulate shire yield from 1901 to 1999 for all wheat-producing shires. Principal components analysis was used to determine the dominating spatial relationships in wheat yield among shires. Six major components of spatial variability were found. Five of these represented near spatially independent zones across the Australian wheatbelt that demonstrated coherent temporal (annual) variability in wheat yield. A second orthogonal component was required to explain the temporal variation in New South Wales. The principal component scores were used to identify high- and low-yielding years in each zone. Year type groupings identified in this way were tested for association with indicators of ENSO. Significant associations were found for all zones in the Australian wheatbelt. Associations were as strong or stronger when ENSO indicators preceding the wheat season (April-May phases of the Southern Oscillation Index) were used rather than indicators based on classification during the wheat season. Although this association suggests an obvious role for seasonal climate forecasting in national wheat crop forecasting, the discriminatory power of the ENSO indicators, although significant, was not strong. By examining the historical years forming the wheat yield analog sets within each zone, it may be possible to identify novel climate system or ocean-atmosphere features that may be causal and, hence, most useful in improving seasonal forecasting schemes.
Resumo:
Measurement of exchange of substances between blood and tissue has been a long-lasting challenge to physiologists, and considerable theoretical and experimental accomplishments were achieved before the development of the positron emission tomography (PET). Today, when modeling data from modern PET scanners, little use is made of earlier microvascular research in the compartmental models, which have become the standard model by which the vast majority of dynamic PET data are analysed. However, modern PET scanners provide data with a sufficient temporal resolution and good counting statistics to allow estimation of parameters in models with more physiological realism. We explore the standard compartmental model and find that incorporation of blood flow leads to paradoxes, such as kinetic rate constants being time-dependent, and tracers being cleared from a capillary faster than they can be supplied by blood flow. The inability of the standard model to incorporate blood flow consequently raises a need for models that include more physiology, and we develop microvascular models which remove the inconsistencies. The microvascular models can be regarded as a revision of the input function. Whereas the standard model uses the organ inlet concentration as the concentration throughout the vascular compartment, we consider models that make use of spatial averaging of the concentrations in the capillary volume, which is what the PET scanner actually registers. The microvascular models are developed for both single- and multi-capillary systems and include effects of non-exchanging vessels. They are suitable for analysing dynamic PET data from any capillary bed using either intravascular or diffusible tracers, in terms of physiological parameters which include regional blood flow. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Consonant imprecision has been reported to be a common feature of the dysarthric speech disturbances exhibited by individuals who have sustained a traumatic brain injury (TBI). Inaccurate tongue placements against the hard palate during consonant articulation may be one factor underlying the imprecision. To investigate this hypothesis, electropalatography (EPG) was used to assess the spatial characteristics of the tongue-to-palate contacts exhibited by three males (aged 23-29 years) with dysarthria following severe TBI. Five nonneurologically impaired adults served as control subjects. Twelve single-syllable words of CV or CVC construction (where initial C = /t, d, S, z, k, g/, V=/i, a/) were read aloud three times by each subject while wearing an EPG palate. Spatial characteristics were analyzed in terms of the location, pattern, and amount of tongue-to-palate contact at the frame of maximum contact during production of each consonant. The results revealed that for the majority of consonants, the patterns and locations of contacts exhibited by the TBI subjects were consistent with the contacts generated by the group of control subjects. One notable exception was one subject's production of the alveolar fricatives in which complete closure across the palate was demonstrated, rather than the characteristic groove configuration. Major discrepancies were also noted in relation to the amount of tongue-to-palate contact exhibited, with two TBI subjects consistently demonstrating increased contacts compared to the control subjects. The implications of these findings for the development of treatment programs for dysarthric speech disorders subsequent to TBI are highlighted.