141 resultados para Seismic reflection method
Resumo:
Realistic time frames in which management decisions are made often preclude the completion of the detailed analyses necessary for conservation planning. Under these circumstances, efficient alternatives may assist in approximating the results of more thorough studies that require extensive resources and time. We outline a set of concepts and formulas that may be used in lieu of detailed population viability analyses and habitat modeling exercises to estimate the protected areas required to provide desirable conservation outcomes for a suite of threatened plant species. We used expert judgment of parameters and assessment of a population size that results in a specified quasiextinction risk based on simple dynamic models The area required to support a population of this size is adjusted to take into account deterministic and stochastic human influences, including small-scale disturbance deterministic trends such as habitat loss, and changes in population density through processes such as predation and competition. We set targets for different disturbance regimes and geographic regions. We applied our methods to Banksia cuneata, Boronia keysii, and Parsonsia dorrigoensis, resulting in target areas for conservation of 1102, 733, and 1084 ha, respectively. These results provide guidance on target areas and priorities for conservation strategies.
Resumo:
Integrable Kondo impurities in two cases of one-dimensional q-deformed t-J models are studied by means of the boundary Z(2)-graded quantum inverse scattering method. The boundary K matrices depending on the local magnetic moments of the impurities are presented as nontrivial realizations of the reflection equation algebras in an impurity Hilbert space. Furthermore, these models are solved by using the algebraic Bethe ansatz method and the Bethe ansatz equations are obtained.
Resumo:
In a magnetic resonance imaging equipment, gradient and shim coils are needed to produce a spatially varying magnetic field throughout the sample being imaged. Such coils consist of turns of wire wound on the surface of a cylindrical tube. Shim coils in particular, must sometimes be designed to produce complicated magnetic fields to correct for impurities. Streamline patterns for shim coils are much more complicated than those for gradient coils, In this work we present a detailed analysis of streamline methods and their application to shim coil design, A method is presented for determining the winding patterns to generate these complicated fields. (C) 2002 John Wiley & Sons, Inc.
Resumo:
This paper presents a numerical technique for the design of an RF coil for asymmetric magnetic resonance imaging (MRI) systems. The formulation is based on an inverse approach where the cylindrical surface currents are expressed in terms of a combination of sub-domain basis functions: triangular and pulse functions. With the homogeneous transverse magnetic field specified in a spherical region, a functional method is applied to obtain the unknown current coefficients. The current distribution is then transformed to a conductor pattern by use of a stream function technique. Preliminary MR images acquired using a prototype RF coil are presented and validate the design method. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A rapid spherical harmonic calculation method is used for the design of Nuclear Magnetic Resonance shim coils. The aim is to design each shim such that it generates a field described purely by a single spherical harmonic. By applying simulated annealing techniques, coil arrangements are produced through the optimal positioning of current-carrying circular arc conductors of rectangular cross-section. This involves minimizing the undesirable harmonies in relation to a target harmonic. The design method is flexible enough to be applied for the production of coil arrangements that generate fields consisting significantly of either zonal or tesseral harmonics. Results are presented for several coil designs which generate tesseral harmonics of degree one.
Resumo:
The paper presents a theory for modeling flow in anisotropic, viscous rock. This theory has originally been developed for the simulation of large deformation processes including the folding and kinking of multi-layered visco-elastic rock (Muhlhaus et al. [1,2]). The orientation of slip planes in the context of crystallographic slip is determined by the normal vector - the director - of these surfaces. The model is applied to simulate anisotropic mantle convection. We compare the evolution of flow patterns, Nusselt number and director orientations for isotropic and anisotropic rheologies. In the simulations we utilize two different finite element methodologies: The Lagrangian Integration Point Method Moresi et al [8] and an Eulerian formulation, which we implemented into the finite element based pde solver Fastflo (www.cmis.csiro.au/Fastflo/). The reason for utilizing two different finite element codes was firstly to study the influence of an anisotropic power law rheology which currently is not implemented into the Lagrangian Integration point scheme [8] and secondly to study the numerical performance of Eulerian (Fastflo)- and Lagrangian integration schemes [8]. It turned out that whereas in the Lagrangian method the Nusselt number vs time plot reached only a quasi steady state where the Nusselt number oscillates around a steady state value the Eulerian scheme reaches exact steady states and produces a high degree of alignment (director orientation locally orthogonal to velocity vector almost everywhere in the computational domain). In the simulations emergent anisotropy was strongest in terms of modulus contrast in the up and down-welling plumes. Mechanisms for anisotropic material behavior in the mantle dynamics context are discussed by Christensen [3]. The dominant mineral phases in the mantle generally do not exhibit strong elastic anisotropy but they still may be oriented by the convective flow. Thus viscous anisotropy (the main focus of this paper) may or may not correlate with elastic or seismic anisotropy.
Resumo:
We illustrate the flow behaviour of fluids with isotropic and anisotropic microstructure (internal length, layering with bending stiffness) by means of numerical simulations of silo discharge and flow alignment in simple shear. The Cosserat theory is used to provide an internal length in the constitutive model through bending stiffness to describe isotropic microstructure and this theory is coupled to a director theory to add specific orientation of grains to describe anisotropic microstructure. The numerical solution is based on an implicit form of the Material Point Method developed by Moresi et al. [1].
Resumo:
The artificial chaperone method for protein refolding developed by Rozema et al. (Rozema, D.; Gellman, S. H. J. Am. Chem. Soc. 1995, 117 (8), 2373-2374) involves the sequential dilution of denatured protein into a buffer containing detergent (cetyltrimethylammonium bromide, CTAB) and then into a refolding buffer containing cyclodextrin WD). In this paper a simplified one-step artificial chaperone method is reported, whereby CTAB is added directly to the denatured solution, which is then diluted directly into a refolding buffer containing P-cyclodextrin (P-CD). This new method can be applied at high protein concentrations, resulting in smaller processing volumes and a more concentrated protein solution following refolding. The increase in achievable protein concentration results from the enhanced solubility of CTAB at elevated temperatures in concentrated denaturant. The refolding yields obtained for the new method were significantly higher than for control experiments lacking additives and were comparable to the yields obtained with the classical two-step approach. A study of the effect of beta-CD and CTAB concentrations on refolding yield suggested two operational regimes: slow stripping ( beta-CDXTABsimilar to1), most suited for higher protein concentrations, and fast stripping (beta-CD/CTABsimilar to2.7), best suited for lower protein concentrations. An increased chaotrope concentration resulted in higher refolding yields and an enlarged operational regime.
Resumo:
1. Cluster analysis of reference sites with similar biota is the initial step in creating River Invertebrate Prediction and Classification System (RIVPACS) and similar river bioassessment models such as Australian River Assessment System (AUSRIVAS). This paper describes and tests an alternative prediction method, Assessment by Nearest Neighbour Analysis (ANNA), based on the same philosophy as RIVPACS and AUSRIVAS but without the grouping step that some people view as artificial. 2. The steps in creating ANNA models are: (i) weighting the predictor variables using a multivariate approach analogous to principal axis correlations, (ii) calculating the weighted Euclidian distance from a test site to the reference sites based on the environmental predictors, (iii) predicting the faunal composition based on the nearest reference sites and (iv) calculating an observed/expected (O/E) analogous to RIVPACS/AUSRIVAS. 3. The paper compares AUSRIVAS and ANNA models on 17 datasets representing a variety of habitats and seasons. First, it examines each model's regressions for Observed versus Expected number of taxa, including the r(2), intercept and slope. Second, the two models' assessments of 79 test sites in New Zealand are compared. Third, the models are compared on test and presumed reference sites along a known trace metal gradient. Fourth, ANNA models are evaluated for western Australia, a geographically distinct region of Australia. The comparisons demonstrate that ANNA and AUSRIVAS are generally equivalent in performance, although ANNA turns out to be potentially more robust for the O versus E regressions and is potentially more accurate on the trace metal gradient sites. 4. The ANNA method is recommended for use in bioassessment of rivers, at least for corroborating the results of the well established AUSRIVAS- and RIVPACS-type models, if not to replace them.
Resumo:
We obtain a class of non-diagonal solutions of the reflection equation for the trigonometric A(n-1)((1)) vertex model. The solutions can be expressed in terms of intertwinner matrix and its inverse, which intertwine two trigonometric R-matrices. In addition to a discrete (positive integer) parameter l, 1 less than or equal to l less than or equal to n, the solution contains n + 2 continuous boundary parameters.
Resumo:
In this work a new approach for designing planar gradient coils is outlined for the use in an existing MRI apparatus. A technique that allows for gradient field corrections inside the diameter-sensitive volume is deliberated. These corrections are brought about by making changes to the wire paths that constitute the coil windings, and hence, is called the path correction method. The existing well-known target held method is used to gauge the performance of a typical gradient coil. The gradient coil design methodology is demonstrated for planar openable gradient coils that can be inserted into an existing MRI apparatus. The path corrected gradient coil is compared to the coil obtained using the target field method. It is shown that using a wire path correction with optimized variables, winding patterns that can deliver high magnetic gradient field strengths and large imaging regions can be obtained.
Resumo:
An improved method for counting virus and virus like particles by electron microscopy (EM) was developed. The procedure involves the determination of the absolute concentration of pure or semi-pure particles once deposited evenly on EM grids using either centrifugation or antibody capture techniques. The counting of particles was done with a Microfiche unit which enlarged approximately 50 x the image of particles on a developed negative film which had been taken at a relatively low magnification (2500 x) by EM. Initially, latex particles of a known concentration were counted using this approach, to prove the accuracy of the technique. The latex particles were deposited evenly on an EM grid using centrifugation (Modified Beckmen EM-90 Airfuge technique). Subsequently, recombinant Bluetongue virus (BTV) core-like particles (CLPs) captured by a Monoclonal antibody using a hovel sample loading method were counted by the Microfiche unit method and by a direct EM method. Comparison of the simplified counting method developed with a conventional method, showed good agreement. The method is simple, accurate, rapid, and reproducible when used with either pure particles or with particles from crude cell culture extracts.
Resumo:
MCM-41 samples of various pore dimensions are synthesized. Plotting of nitrogen adsorption data at 77 K versus the statistical film thickness (comparison plot) reveals three distinct stages, with a characteristic of two points of inflection. The steep intermediate stage caused by capillary condensation occurred in the highly uniform mesopores. From the slopes of the sections before and after the condensation, the surface area of the mesopores is calculated. The linear portion of the last section is extrapolated to the adsorption axis of the comparison plot, and this intercept is used to obtain the volume of the mesopores. From the surface area and pore volume, average mesopore diameter is calculated, and the value thus obtained is in good agreement with the pore dimension obtained from powder X-ray diffraction measurements. The principle of the calculation as well as problems associated are discussed in detail.