48 resultados para Second Order Stress Moment
Resumo:
Difference equations which may arise as discrete approximations to two-point boundary value problems for systems of second-order, ordinary differential equations are investigated and conditions are formulated under which solutions to the discrete problem are unique. Some existence, uniqueness implies existence, and convergence theorems for solutions to the discrete problem are also presented.
Resumo:
This paper describes the buckling phenomenon of a tubular truss with unsupported length through a full-scale test and presents a practical computational method for the design of the trusses allowing for the contribution of torsional stiffness against buckling, of which the effect has never been considered previously by others. The current practice for the design of a planar truss has largely been based on the linear elastic approach which cannot allow for the contribution of torsional stiffness and tension members in a structural system against buckling. The over-simplified analytical technique is unable to provide a realistic and an economical design to a structure. In this paper the stability theory is applied to the second-order analysis and design of the structural form, with detailed allowance for the instability and second-order effects in compliance with design code requirements. Finally, the paper demonstrates the application of the proposed method to the stability design of a commonly adopted truss system used in support of glass panels in which lateral bracing members are highly undesirable for economical and aesthetic reasons.
Resumo:
In recent years, progress has been made in modelling long chain branched polymers by the introduction of the so-called pompom model. Initially developed by McLeish and Larson (1998), the model has undergone several improvements or alterations, leading to the development of new formulations. Some of these formulations however suffer from certain mathematical defects. The purpose of the present paper is to review some of the formulations of the pom-pom constitutive model, and to investigate their possible mathematical defects. Next, an alternative formulation is proposed, which does not appear to exhibit mathematical defects, and we explore its modelling performance by comparing the predictions with experiments in non-trivial rheometric flows of an LDPE melt. The selected rheometric flows are the double step strain, as well as the large amplitude oscillatory shear experiments. For LAOS experiments, the comparison involves the use of Fourier-transform analysis.