66 resultados para Salmon fishing
Resumo:
Groupers (Epinephelinae) are prominent marine fishes distributed in the warmer waters of the world. Review of the literature suggests that trematodes are known from only 62 of the 159 species and only 9 of 15 genera; nearly 90% of host-parasite combinations have been reported only once or twice. All 20 families and all but 7 of 76 genera of trematodes found in epinephelines also occur in non-epihephelines. Only 12 genera of trematodes are reported from both the Atlantic-Eastern Pacific and the Indo-West Pacific. Few (perhaps no) species are credibly cosmopolitan but some have wide distributions across the Indo-West Pacific. The hierarchical 'relatedness' of epinephelines as suggested by how they share trematode taxa (families, genera, species) shows little congruence with what is known of their phylogeny. The major determinant of relatedness appears to be geographical proximity. Together these attributes suggest that host-parasite coevolution has contributed little to the evolution of trematode communities of epinephelines. Instead, they appear to have arisen through localized episodes of host-switching, presumably both into and out of the epinephelines. The Epinephelinae may well be typical of most groups of marine fishes both in the extent to which their trematode parasites are known and in that, apparently, co-evolution has contributed little to the evolution of their communities of trematodes.
Resumo:
Complex life cycles are a hallmark of parasitic trematodes. In several trematode taxa, however, the life cycle is truncated: fewer hosts are used than in a typical three-host cycle, with fewer transmission events. Eliminating one host from the life cycle can be achieved in at least three different ways. Some trematodes show even more extreme forms of life cycle abbreviations, using only a mollusc to complete their cycle, with or without sexual reproduction. The occurrence of these phenomena among trematode families are reviewed here and show that life cycle truncation has evolved independently many times in the phylogeny of trematodes. The hypotheses proposed to account for life-cycle truncation, in addition to the factors preventing the adoption of shorter cycles by all trematodes are also discussed. The study of shorter life cycles offers an opportunity to understand the forces shaping the evolution of life cycles in general.
Resumo:
If the cestodes are excluded, then the parasitic platyhelminths of fishes divide neatly into the external and monoxenous Monogenea and the internal and heteroxenous Digenea. Both groups have apparently had long associations of coevolution, host switching and adaptation with fishes and have become highly successful in their respective habitats. Current estimates of species richness for the two groups suggest that they may be remarkably similar. Here we consider the nature of the diversity of the Monogenea. and Digenea of fishes in terms of richness of species and higher taxa to determine what processes may be responsible for observed differences. The Monogenea includes at least two super-genera (Dactylogyrus and Gyrodactylus) each of which has hundreds of species, no comparable genera are found in the Digenea. Possible reasons for this difference include the higher host specificity of monogeneans and their shorter generation Lime. If allowance is made for the vagaries of taxonomic 'lumping' and 'splitting', then there are probably comparable numbers of families of monogeneans and digeneans in fishes. However, the nature of the families differ profoundly. Richness in higher taxa (families) in the Digenea is explicable in terms of processes that appear to have been unimportant in the Monogenea. Readily identifiable sources of diversity in the Digenea are: recolonisation of fishes by taxa that arose in association with tetrapods; adoption of new sites within hosts; adoption of new diets and feeding mechanisms; adaptations relating to the exploitation of ecologically similar groups of fishes and second intermediate hosts; and adaptations relating to the exploitation of phylogenetic lineages of molluscs. In contrast, most higher- level monogenean diversity (other than that associated with the subclasses) relates principally to morphological specialisation for attachment by the haptor. (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Monostephanostomum georgianum n. sp. is described from Arripis georgianus off Kangaroo Island, South Australia. It differs from its congeners by the presence of a short second row of oral spines. M. manteri Kruse, 1979 is reported from A. georgianus off southern Western Australia and Kangaroo Island, South Australia and A. trutta off northern Tasmania. It is considered that the other two species, M. yamagutii Ramadan, 1984 and M. krusei Reimer, 1983, should probably be removed from this genus. Two new combinations are formed, M. gazzae (Shen, 1990) n. comb. (from Stephanostomum) and M. mesospinosum (Madhavi, 1976) n. comb. (from Stephanostomum). A key to the four recognised species of Monostephanostomum is given.
Resumo:
Two new species of Pseudocreadium are described from off northern Tasmania, P maturini sp. nov. from Meuschenia freycineti and P aubreyi sp. nov. from Acanthaluteres vittiger. They differ from the only other recognised species in the genus by the number of ovarian lobes and by size, and they differ from each other by size, shape, caecal length, forebody length, pre-oral lobe size, uterine position, excretory vesicle length and oral sucker shape. Lobatocreadium exiguum is redescribed from Sufflamen bursa, off Moorea, French Polynesia and Abalistes stellatus, Swain Reefs, Great Barrier Reef, Queensland. Records and measurements are given for Hypocreadium cavum from Sufflamen fraenatus and Lepotrema clavatum from Melichthys vidua, both off Heron Island, Great Barrier Reef, Queensland.
Resumo:
Measurements are given for all and full descriptions and illustrations for some of the following enenterid species: Enenterum aureum Linton, 1910 in Kyphosus bigibbus and K. sydneyanus? from Ningaloo Coral Reef, Western Australia, K. vaigiensis from off Heron Island, Queensland and K. vaigiensis from off Moorea, French Polynesia; E. mannarense Hafeezullah, 1980 in K. bigibbus and K. sydneyanus? from Ningaloo Coral Reef; E. elongatum Yamaguti, 1970 in K. vaigiensis from Heron Island, Queensland and K. bigibbus and K. sydneyanus? from Ningaloo Coral Reef; Koseiria alanwilliamsi sp. nov. in Kyphosus cornelii from off Kalbarri, Western Australia; Koseiria xishaense Gu et Shen, 1983 in K. vaigiensis from off Heron Island and K. bigibbus from off Palau, Micronesia; Proenenterum isocotylum Manter, 1954 in Aplodactylus arctidens from off Stanley, Tasmania; R ericotylum Manter, 1954 in A. arctidens from off Stanley; Cadenatella isuzumi Machida, 1993 from Kyphosus bigibbus and K. sydneyanus? from Ningaloo Coral Reef; Cadenatella pacifica (Yamaguti, 1970) from Kyphosus bigibbus from Ningaloo Coral Reef. Two recent cladistic studies of the Enenteridae are discussed and a further analysis has shown that Enenterum and Cadenatella are monophyletic, whilst Koseiria appears polyphyletic. The zoogeography and host-specificity of Kyphosus-inhabiting enenterids is discussed.
Resumo:
Although largely solitary, humpback whales exhibit a number of behaviours where individuals co-operate with one another, for example during bubble net feeding. Such cases could be due to reciprocal altruism brought on by exceptional circumstances, for example the presence of abundant shoaling fish. An alternative explanation is that these behaviours have evolved through kin selection. With little restriction to either communication or movement, diffuse groups of relatives could maintain some form of social organization without the need to travel in tight-nit units. To try to distinguish between these hypotheses, we took advantage of the fact that migrating humpback whales often swim together in small groups. If kin selection is important in humpback whale biology, these groups should be enriched for relatives. Consequently, we analysed biopsy samples from 57 groups of humpback whales migrating off Eastern Australia in 1992. A total of 142 whales were screened for eight microsatellite markers. Mitochondrial DNA sequences (371 bp) were also used to verify and assist kinship identification. Our data add support to the notion that mothers travel with their offspring for the first year of the calf's life. However, beyond the presence of mother-calf/yearling pairs, no obvious relatedness pattern was found among whales sampled either in the same pod or on the same day. Levels of relatedness did not vary between migratory phases (towards or away from the breeding ground), nor between the two sexes considered either overall or in the north or south migrations separately. These findings suggest that, if any social organization does exist, it is formed transiently when needed rather than being a constant feature of the population, and hence is more likely based on reciprocal altruism than kin selection.
Resumo:
Dinoflagellates exist in symbiosis with a number of marine invertebrates including giant clams, which are the largest of these symbiotic organisms. The dinoflagellates (Symbiodinium sp.) live intercellularly within tubules in the mantle of the host clam. The transport of inorganic carbon (Ci) from seawater to Symbiodinium (=zooxanthellae) is an essential function of hosts that derive the majority of their respiratory energy from the photosynthate exported by the zooxanthellae. Immunolocalisation studies show that the host has adapted its physiology to acquire, rather than remove CO2, from the haemolymph and clam tissues. Two carbonic anhydrase (CA) isoforms (32 and 70 kDa) play an essential part in this process. These have been localised to the mantle and gill tissues where they catalyse the interconversion of HCO3- to CO2, which then diffuses into the host tissues. The zooxanthellae exhibit a number of strategies to maximise Ci acquisition and utilisation. This is necessary as they express a form II Rubisco that has poor discrimination between CO2 and O-2. Evidence is presented for a carbon concentrating mechanism (CCM) to overcome. this disadvantage. The CCM incorporates the presence of a light-activated CA activity, a capacity to take up both HCO3- and CO2, an ability to accumulate an elevated concentration of Ci within the algal cell, and localisation of Rubisco to the pyrenoid. These algae also express both external and intracellular CAs, with the intracellular isoforms being localised to the thylakoid lumen and pyrenoid. These results have been incorporated into a model that explains the transport of Ci from seawater through the clam to the zooxanthellae.
Testing the applicability of molecular genetic markers to population analyses of scleratinian corals
Resumo:
The abundance of coral reefs worldwide is in decline, and despite the ecological importance of reefs, only a limited number of DNA markers have been identified for scleractinian coral genetic studies. This paper addresses the search for new coral molecular markers and investigates the applicability of the cytochrome c oxidase subunit I (COI), the internal transcribed spacer region 1 (ITS1), and the pocilloporin gene to the question of intraspecific variation in the scleractinian coral Pocillopora verrucosa along the southeast African coastline. The COI fragment was 710 bp long and was identical for P. verrucosa (n = 10) and P. damicornis (n = 3). Only two different ITS1 sequences were found (differing by 13 bp insertion), but more importantly, 24% of the sequences were heterogenous indicating that different multiple copies of the sequence exist. Pocilloporin is an intronless gene that was absolutely conserved throughout all P. verrucosa populations (n = 50). Thus, the three DNA regions studied appear unsuitable for the population genetic analyses of P. verrucosa.
Resumo:
In this study the first measurements of DMSP in six species of corals and ten species of benthic algae collected from four coral reefs in the Great Barrier Reef are reported, together with DMSP measurements made on cultured zooxanthellae. Concentrations ranged from 21 to 3831 (mean=743) fmol DMSP zooxanthellae(-1) in corals, 0.16 to 2.96 nmol DMSP cm(-2) (mean=90) for benthic macroalgae, and 48-285 fmol DMSP zooxanthellae(-1) (mean=153) for cultured zooxanthellae. The highest concentrations of DMSP in corals occurred in Acropora formosa (mean= 371 fmol DMSP zooxanthellae(-1)) and Acropora palifera (mean=3341 fmol DMSP zooxanthellae(-1)) with concentrations in A. palifera the highest DMSP concentrations reported in corals examined to date. As well as inter-specific differences in DMSP, intra-specific variation was also observed. Adjacent colonies of A. formosa that are known to have different thermal bleaching thresholds and morphologically distinct zooxanthellae, were also observed to have different DMSP concentrations, with the zooxanthellae in the colony that bleached containing DMSP at an average concentration of 436 finol zooxanthellae(-1), whilst the non-bleaching colony contained DMSP at an average concentration of 171 finol zooxanthellae(-1). The results of the present study have been used to calculate the area normalized DMSP concentrations in benthic algae (mean=0.015 mmol m(-2)) and corals (mean=2.22 mmol m(-2)) from the GBR. This data indicates that benthic algae and corals are a significant reservoir of DMSP in GBR waters. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Fish occupy a range of hydrological habitats that exert different demands on locomotor performance. We examined replicate natural populations of the rainbow fishes Melanotaenia eachamensis and M. duboulayi to determine if colonization of low-velocity (lake) habitats by fish from high-velocity (stream) habitats resulted in adaptation of locomotor morphology and performance. Relative to stream conspecifics, lake fish had more posteriorly positioned first dorsal and pelvic fins, and shorter second dorsal fin bases. Habitat dimorphism observed between wild-caught fish was determined to be heritable as it was retained in M. eachamensis offspring raised in a common garden. Repeated evolution of the same heritable phenotype in independently derived populations indicated body shape divergence was a consequence of natural selection. Morphological divergence between hydrological habitats did not support a priori expectations of deeper bodies and caudal peduncles in lake fish. However, observed divergence in fin positioning was consistent with a family-wide association between habitat and morphology, and with empirical studies on other fish species. As predicted, decreased demand for sustained swimming in takes resulted in a reduction in caudal red muscle area of lake fish relative to their stream counterparts. Melanotaenia duboulayi lake fish also had slower sustained swimming speeds (U-crit) than stream conspecifics. In M. eachamensis, habitat affected U-crit of males and females differently. Specifically, females exhibited the pattern observed in M. duboulayi (lake fish had faster U-crit than stream fish), but the opposite association was observed in males (stream males had slower Ucrit than lake males). Stream M. eachamensis also exhibited a reversed pattern of sexual dimorphism in U-crit (males slower than females) relative to all other groups (males faster than females). We suggest that M. eachamensis males from streams responded to factors other than water velocity. Although replication of muscle and U,,it phenotypes across same habitat populations within and/or among species was suggestive of adaptation, the common garden experiment did not confirm a genetic basis to these associations. Kinematic studies should consider the effect of the position and base length of dorsal fins.
Resumo:
Many kinds of transcription factors and regulators play key roles in a variety of developmental processes. In the present survey, genes encoding proteins with conserved HMG-box, bZip domains, and some types of zinc finger motifs were surveyed in the completely sequenced genome of Ciona intestinalis. In the present analysis, 21 HMG-box-containing genes and 26 bZip genes were identified as well as four small groups of zinc finger genes in the Ciona genome. The results also showed that a less redundant set of genes is present in the Ciona genome compared with vertebrate genomes. In addition, cDNA clones for almost all genes identified have been cloned and distributed as a Ciona intestinalis Gene Collection Release I. The present comprehensive analysis therefore provides a means to study the role of these transcription factors in developmental processes of basal chordates.
Resumo:
In the present survey, we identified most of the genes involved in the receptor tyrosine kinase (RTK), mitogen activated protein kinase (MAPK) and Notch signaling pathways in the draft genome sequence of Ciona intestinalis, a basal chordate. Compared to vertebrates, most of the genes found in the Ciona genome had fewer paralogues, although several genes including ephrin, Eph and fringe appeared to have multiplied or duplicated independently in the ascidian genome. In contrast, some genes including kit/flt, PDGF and Trk receptor tyrosine kinases were not found in the present survey, suggesting that these genes are innovations in the vertebrate lineage or lost in the ascidian lineage. The gene set identified in the present analysis provides an insight into genes for the RTK, MAPK and Notch signaling pathways in the ancient chordate genome and thereby how chordates evolved these signaling pathway.