50 resultados para STRUCTURE-BASED DESIGN


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the design of lattice domes, design engineers need expertise in areas such as configuration processing, nonlinear analysis, and optimization. These are extensive numerical, iterative, and lime-consuming processes that are prone to error without an integrated design tool. This article presents the application of a knowledge-based system in solving lattice-dome design problems. An operational prototype knowledge-based system, LADOME, has been developed by employing the combined knowledge representation approach, which uses rules, procedural methods, and an object-oriented blackboard concept. The system's objective is to assist engineers in lattice-dome design by integrating all design tasks into a single computer-aided environment with implementation of the knowledge-based system approach. For system verification, results from design examples are presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Incremental parsing has long been recognized as a technique of great utility in the construction of language-based editors, and correspondingly, the area currently enjoys a mature theory. Unfortunately, many practical considerations have been largely overlooked in previously published algorithms. Many user requirements for an editing system necessarily impact on the design of its incremental parser, but most approaches focus only on one: response time. This paper details an incremental parser based on LR parsing techniques and designed for use in a modeless syntax recognition editor. The nature of this editor places significant demands on the structure and quality of the document representation it uses, and hence, on the parser. The strategy presented here is novel in that both the parser and the representation it constructs are tolerant of the inevitable and frequent syntax errors that arise during editing. This is achieved by a method that differs from conventional error repair techniques, and that is more appropriate for use in an interactive context. Furthermore, the parser aims to minimize disturbance to this representation, not only to ensure other system components can operate incrementally, but also to avoid unfortunate consequences for certain user-oriented services. The algorithm is augmented with a limited form of predictive tree-building, and a technique is presented for the determination of valid symbols for menu-based insertion. Copyright (C) 2001 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A generalised model for the prediction of single char particle gasification dynamics, accounting for multi-component mass transfer with chemical reaction, heat transfer, as well as structure evolution and peripheral fragmentation is developed in this paper. Maxwell-Stefan analysis is uniquely applied to both micro and macropores within the framework of the dusty-gas model to account for the bidisperse nature of the char, which differs significantly from the conventional models that are based on a single pore type. The peripheral fragmentation and random-pore correlation incorporated into the model enable prediction of structure/reactivity relationships. The occurrence of chemical reaction within the boundary layer reported by Biggs and Agarwal (Chem. Eng. Sci. 52 (1997) 941) has been confirmed through an analysis of CO/CO2 product ratio obtained from model simulations. However, it is also quantitatively observed that the significance of boundary layer reaction reduces notably with the reduction of oxygen concentration in the flue gas, operational pressure and film thickness. Computations have also shown that in the presence of diffusional gradients peripheral fragmentation occurs in the early stages on the surface, after which conversion quickens significantly due to small particle size. Results of the early commencement of peripheral fragmentation at relatively low overall conversion obtained from a large number of simulations agree well with experimental observations reported by Feng and Bhatia (Energy & Fuels 14 (2000) 297). Comprehensive analysis of simulation results is carried out based on well accepted physical principles to rationalise model prediction. (C) 2001 Elsevier Science Ltd. AH rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Doped ceria (CeO2) compounds are fluorite type oxides that show oxygen ionic conductivity higher than yttria stabilized zirconia, in oxidizing atmosphere. In order to improve the conductivity, the effective index was suggested to maximize the oxygen ionic conductivity in doped CeO2 based oxides. In addition, the true microstructure of doped CeO2 was observed at atomic scale for conclusion of conduction mechanism. Doped CeO2 had small domains (10-50 nm) with ordered structure in a grain. It is found that the electrolytic properties strongly depended on the nano-structural feature at atomic scale in doped CeO2 electrolyte.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The concept of crystallographic index termed the effective index is suggested and applied to the design of ceria (CeO2)-based electrolytes to maximize oxide ionic conductivity. The suggested index considers the fluorite structure, and combines the expected oxygen vacancy level with the ionic radius mismatch between host and dopant cations. Using this approach, oxide ionic conductivity of Sm- or La-doped CeO2-based system has been optimized and tested under operating conditions of a solid oxide fuel cell. In the observation of microstructure in atomic scale, both Sm-doped CeO2 and La-doped CeO2 electrolytes had large micro-domains over 10 nm in the lattice. On the other hand, Sm or La and alkaline earth co-doped CeO2-based electrolytes with high effective index had small micro-domains around 1-3 nm in the microstructure. The large micro-domain would prevent oxide ion from passing through the lattice. Therefore, it is concluded that the improvement of ionic conductivity is reflected in changes of microstructure in atomic scale. (C) 2002 Elsevier Science B.V. All rights reserved.