87 resultados para SPATIAL GENETIC STRUCTURE
Resumo:
In this paper, genetic algorithm (GA) is applied to the optimum design of reinforced concrete liquid retaining structures, which comprise three discrete design variables, including slab thickness, reinforcement diameter and reinforcement spacing. GA, being a search technique based on the mechanics of natural genetics, couples a Darwinian survival-of-the-fittest principle with a random yet structured information exchange amongst a population of artificial chromosomes. As a first step, a penalty-based strategy is entailed to transform the constrained design problem into an unconstrained problem, which is appropriate for GA application. A numerical example is then used to demonstrate strength and capability of the GA in this domain problem. It is shown that, only after the exploration of a minute portion of the search space, near-optimal solutions are obtained at an extremely converging speed. The method can be extended to application of even more complex optimization problems in other domains.
Resumo:
Genetic population structure in the catadromous Australian bass Macquaria novemaculeata was investigated using samples from four locations spanning 600 km along the eastern Australian coastline. Both allozymes and mtDNA control region sequences were examined. Population subdivision estimates based on allozymes revealed low levels of population structuring (G(st)=0.043, P<0.05). However, mtDNA indicated moderate levels of geographic population structure (G(st)=0.146, P<0.01). Phylogenetic analysis of mtDNA control region sequences (mean sequence divergence 1.9%) indicated little phylogeographic structuring. Results suggested that genotypic variation within each river population, while bring affected primarily by genetic drift, was also prevented from more significant divergence by homogenizing levels of gene flow-synonymous with a one-dimensional stepping-stone model of population structure. The catadromous life history of Macquaria novemaculeata was considered to br influential on the pattern of population structure displayed. Results were compared to the few population genetic studies involving catadromous fishes, indicating that catadromy alone is unlikely to be a good predictor of population structure. A more comprehensive suite of biological characteristics than simple life-history traits must be considered fully to allow reliable predictive models of population structure to be formulated. (C) 1997 The Fisheries Society of the British Isles.
Resumo:
The collection of spatial information to quantify changes to the state and condition of the environment is a fundamental component of conservation or sustainable utilization of tropical and subtropical forests, Age is an important structural attribute of old-growth forests influencing biological diversity in Australia eucalypt forests. Aerial photograph interpretation has traditionally been used for mapping the age and structure of forest stands. However this method is subjective and is not able to accurately capture fine to landscape scale variation necessary for ecological studies. Identification and mapping of fine to landscape scale vegetative structural attributes will allow the compilation of information associated with Montreal Process indicators lb and ld, which seek to determine linkages between age structure and the diversity and abundance of forest fauna populations. This project integrated measurements of structural attributes derived from a canopy-height elevation model with results from a geometrical-optical/spectral mixture analysis model to map forest age structure at a landscape scale. The availability of multiple-scale data allows the transfer of high-resolution attributes to landscape scale monitoring. Multispectral image data were obtained from a DMSV (Digital Multi-Spectral Video) sensor over St Mary's State Forest in Southeast Queensland, Australia. Local scene variance levels for different forest tapes calculated from the DMSV data were used to optimize the tree density and canopy size output in a geometric-optical model applied to a Landsat Thematic Mapper (TU) data set. Airborne laser scanner data obtained over the project area were used to calibrate a digital filter to extract tree heights from a digital elevation model that was derived from scanned colour stereopairs. The modelled estimates of tree height, crown size, and tree density were used to produce a decision-tree classification of forest successional stage at a landscape scale. The results obtained (72% accuracy), were limited in validation, but demonstrate potential for using the multi-scale methodology to provide spatial information for forestry policy objectives (ie., monitoring forest age structure).
Resumo:
We assayed mtDNA haplotype [300 base pairs (bp) control region] geography and genealogy in the Indo-Pacific tasselfish, Polynemus sheridani from its contiguous estuarine distribution across northern Australia (n = 169). Eight estuaries were sampled from three oceanographic regions (Timor Sea, Gulf of Carpentaria and the Coral Sea) to assess the impact of Pleistocene sea level changes on the historical connectivity among P. sheridani populations. Specifically, we investigated the genetic consequences of disruption to Indian-Pacific Ocean connectivity brought about by the closure of the Torres Strait. Overall there was significant population subdivision among estuaries (F-ST = 0.161, (Phi(ST) = 0.187). Despite a linear distribution, P. sheridani did not show isolation by distance over the entire sampled range because of genetic similarity of estuaries greater than 3000 km apart. However, significant isolation by distance was detected between estuaries separated by less than 3000 km of coastline. Unlike many genetic studies of Indo-Pacific marine species, there was no evidence for an historical division between eastern and western populations. Instead, phylogeographical patterns were dominated by a starlike intraspecific phylogeny coupled with evidence for population expansion in both the Gulf of Carpentaria and the Coral Sea but not the Timor Sea. This was interpreted as evidence for recent west to east recolonization across of northern Australia following the last postglacial marine advance. We argue that although sufficient time has elapsed postcolonization for populations to approach gene flow-drift equilibrium over smaller spatial scales (< 3000 km), the signal of historical colonization persists to obscure the expected equilibrium pattern of isolation by distance over large spatial scales (> 3000 km).
Resumo:
Genetic diversity and population structure were investigated across the core range of Tasmanian devils (Sarcophilus laniarius; Dasyuridae), a wide-ranging marsupial carnivore restricted to the island of Tasmania. Heterozygosity (0.386-0.467) and allelic diversity (2.7-3.3) were low in all subpopulations and allelic size ranges were small and almost continuous, consistent with a founder effect. Island effects and repeated periods of low population density may also have contributed to the low variation. Within continuous habitat, gene flow appears extensive up to 50 km (high assignment rates to source or close neighbour populations; nonsignificant values of pairwise F-ST), in agreement with movement data. At larger scales (150-250 km), gene flow is reduced (significant pairwise F-ST) but there is no evidence for isolation by distance. The most substantial genetic structuring was observed for comparisons spanning unsuitable habitat, implying limited dispersal of devils between the well-connected, eastern populations and a smaller northwestern population. The genetic distinctiveness of the northwestern population was reflected in all analyses: unique alleles; multivariate analyses of gene frequency (multidimensional scaling, minimum spanning tree, nearest neighbour); high self-assignment (95%); two distinct populations for Tasmania were detected in isolation by distance and in Bayesian model-based clustering analyses. Marsupial carnivores appear to have stronger population subdivisions than their placental counterparts.
Resumo:
Ochlerotatus notoscriptus (Skuse) (Diptera: Culicidae) is the predominant peridomestic mosquito in Australia where it is the primary vector of dog heartworm, Dirofilaria immitis (Leidy), and a potentially important vector of arboviruses (Barmah Forest, Ross River) with geographical variation of vector competence. Although widespread, Oc. notoscriptus has low dispersal ability, so it may have isolated subpopulations. The identification of gene flow barriers may assist in understanding arbovirus epidemiology and disease risk, and for developing control strategies for this species. We investigated the population structure of Oc. notoscriptus from 17 sites around Australia, using up to 31 putative allozyme loci, 11 of which were polymorphic. We investigated the effect of larval environment and adult morphology on genetic variation. At least five subpopulations were found, four in New South Wales (NSW) and one unique to Darwin. Perth samples appear to be a product of recent colonization from the Australian east coast. For NSW sites, a Mantel test revealed an isolation by distance effect and spatial autocorrelation analysis revealed an area of effective gene flow of 67 km, which is high given the limited dispersal ability of this species. No consistent difference was observed between 'urban' and 'sylvan' habitats, which suggests frequent movement between these sites. However, a finer-scaled habitat study at Darwin revealed small but significant allele frequency differences, including for Gpi. No fixed allozyme differences were detected for sex, size, integument colour or the colour of species-diagnostic pale scales on the scutum. The domestic habit of Oc. notoscriptus and assisted dispersal have helped to homogenize this species geographically but population structure is still detectable on several levels associated with geographical variation of vector competence.
Resumo:
Genotypic diversity in Fusarium pseudograminearum and F. graminearum from Australia and the relationship between diversity and pathogen aggressiveness for head blight and/or crown rot of wheat were examined. Amplified fragment length polymorphism (AFLP) analysis revealed a high level of genotypic diversity within each species. Sixty-three of the 149 AFLP loci were significantly different between the two species and 70 of 72 F. pseudograminearum and 56 of 59 F. graminearum isolates had distinct haplotypes. When head blight and crown rot severity data from a recently published work on isolates representing the entire range of aggressiveness were used, only the genotypic diversity of F. pseudograminearum was significantly associated with its aggressiveness for the two diseases. Cluster analyses clearly demonstrated the polyphyletic structures that exist in both pathogen populations. The spatial diversity within F. graminearum was high within a single field, while frequent gene flow (N-m similar to 14) and a low fixation index (G(st) = 0.03) were recorded among F. pseudograminearum isolates from the adjacent states of New South Wales and Queensland. The differences in population structure between the heterothallic F. pseudograminearum (teleomorph G. coronicola) and the homothallic F. graminearum (teleomorph G. zeae) were not as pronounced as expected given their contrasting mating systems. Neither species was panmictic or strictly clonal. This points to sexual recombination in F. pseudograminearum, suggesting that ascospores of G. coronicola may also play a role in its biology and epidemiology.
Resumo:
Ecological genetic studies have demonstrated that spatial patterns of mating dispersal, the dispersal of gametes through mating behaviour, can facilitate inbreeding avoidance and strongly influence the structure of populations, particularly in highly philopatric species. Elements of breeding group dynamics, such as strong structuring and sex-biased dispersal among groups, can also minimize inbreeding and positively influence levels of genetic diversity within populations. Rock-wallabies are highly philopatric mid-sized mammals whose strong dependence on rocky terrain has resulted in series of discreet, small colonies in the landscape. Populations show no signs of inbreeding and maintain high levels of genetic diversity despite strong patterns of limited gene flow within and among colonies. We used this species to investigate the importance of mating dispersal and breeding group structure to inbreeding avoidance within a 'small' population. We examined the spatial patterns of mating dispersal, the extent of kinship within breeding groups, and the degree of relatedness among brush-tailed rock-wallaby breeding pairs within a colony in southeast Queensland. Parentage data revealed remarkably restricted mating dispersal and strong breeding group structuring for a mid-sized mammal. Breeding groups showed significant levels of female kinship with evidence of male dispersal among groups. We found no evidence for inbreeding avoidance through mate choice; however, anecdotal data suggest the importance of life history traits to inbreeding avoidance between first-degree relatives. We suggest that the restricted pattern of mating dispersal and strong breeding group structuring facilitates inbreeding avoidance within colonies. These results provide insight into the population structure and maintenance of genetic diversity within colonies of the threatened brush-tailed rock-wallaby.
Resumo:
The scale at which algal biodiversity is partitioned across the landscape, and the biophysical processes and biotic interactions which shape these communities in dryland river refugia was studied on two occasions from 30 sites in two Australian dryland rivers. Despite the waterholes studied having characteristically high levels of abiogenic turbidity, a total of 186 planktonic microalgae, 253 benthic diatom and 62 macroalgal species were recorded. The phytoplankton communities were dominated by flagellated cryptophytes, euglenophytes and chlorophytes, the diatom communities by cosmopolitan taxa known to tolerate wide environmental conditions, and the macroalgal communities by filamentous cyanobacteria. All algal communities showed significant differences between catchments and sampling times, with a suite of between 5 and 12 taxa responsible for similar to 50% of the observed change. In general, algal assemblage patterns were poorly correlated with the measured environmental variables. Phytoplankton and diatom assemblage patterns were weakly correlated with several waterhole geomorphic measures, whereas macroalgal assemblage patterns showed some association with variability in ionic concentration.
Resumo:
Government agencies responsible for riparian environments are assessing the combined utility of field survey and remote sensing for mapping and monitoring indicators of riparian zone health. The objective of this work was to determine if the structural attributes of savanna riparian zones in northern Australia can be detected from commercially available remotely sensed image data. Two QuickBird images and coincident field data covering sections of the Daly River and the South Alligator River - Barramundie Creek in the Northern Territory were used. Semi-variograms were calculated to determine the characteristic spatial scales of riparian zone features, both vegetative and landform. Interpretation of semi-variograms showed that structural dimensions of riparian environments could be detected and estimated from the QuickBird image data. The results also show that selecting the correct spatial resolution and spectral bands is essential to maximize the accuracy of mapping spatial characteristics of savanna riparian features. The distribution of foliage projective cover of riparian vegetation affected spectral reflectance variations in individual spectral bands differently. Pan-sharpened image data enabled small-scale information extraction (< 6 m) on riparian zone structural parameters. The semi-variogram analysis results provide the basis for an inversion approach using high spatial resolution satellite image data to map indicators of savanna riparian zone health.
Resumo:
Inosine triphosphate pyrophosphohydrolase (ITPase) deficiency is a common inherited condition characterized by the abnormal accumulation of inosine triphosphate (ITP) in erythrocytes. The genetic basis and pathological consequences of ITPase deficiency are unknown. We have characterized the genomic structure of the ITPA gene, showing that it has eight exons. Five single nucleotide polymorphisms were identified, three silent (138GMA, 561GMA, 708GMA) and two associated with ITPase deficiency (94CMA, IVS2+21AMC). Homozygotes for the 94CMA missense mutation (Pro32 to Thr) had zero erythrocyte ITPase activity, whereas 94CMA heterozygotes averaged 22.5% of the control mean, a level of activity consistent with impaired subunit association of a dimeric enzyme. ITPase activity of IVS2+21AMC homozygotes averaged 60% of the control mean. In order to explore further the relationship between mutations and enzyme activity, we examined the association between genotype and ITPase activity in 100 healthy controls. Ten subjects were heterozygous for 94CMA (allele frequency: 0.06), 24 were heterozygotes for IVS2+21AMC (allele frequency: 0.13) and two were compound heterozygous for these mutations. The activities of IVS2+21AMC heterozygotes and 94CMA/IVS2+21AMC compound heterozygotes were 60% and 10%, respectively, of the normal control mean, suggesting that the intron mutation affects enzyme activity. In all cases when ITPase activity was below the normal range, one or both mutations were found. The ITPA genotype did not correspond to any identifiable red cell phenotype. A possible relationship between ITPase deficiency and increased drug toxicity of purine analogue drugs is proposed.