135 resultados para Renal Transplant Recipients
Resumo:
The role of the therapeutic drug monitoring laboratory in support of immunosuppressant drug therapy is well established, and the introduction of sirolimus (SRL) is a new direction in this field. The lack of an immunoassay for several years has restricted the availability of SRL assay services. The recent availability of a CEDIA (R) SRL assay has the potential to improve this situation. The present communication has compared the CEDIA (R) SRL method with 2 established chromatographic methods, HPLC-UV and HPLC-MS/MS. The CEDIA (R) method, run on a Hitachi 917 analyzer, showed acceptable validation criteria with within-assay precision of 9.1% and 3.3%, and bias of 17.1% and 5.8%, at SRL concentrations of 5.0 mu g/L and 20 mu g/L, respectively. The corresponding between-run precision values were 11.5% and 3.3% and bias of 7.1% and 2.9% at 5.0 mu g/L and 20 mu g/L, respectively, The lower limit of quantification was found to be 3.0 mu g/L. A series of 96 EDTA whole-blood samples predominantly from renal transplant recipients were assayed by the 3 methods for comparison. It was found that the CEDIA (R) method showed a Deming regression line of CEDIA = 1.20 X HPLC-MS/MS - 0.07 (r = 0.934, SEE = 1.47), with a mean bias of 20.4%. Serial blood samples from 8 patients included in this evaluation showed that the CEDIA (R) method reflected the clinical fluctuations in the chromatographic methods, albeit with the variable bias noted. The CEDIA (R) method on the H917 analyzer is therefore a useful adjunct to SRL dosage individualization in renal transplant recipients.
Resumo:
Alternative measures to trough concentrations [non-trough concentrations and limited area under the concentration-time curve (AUC)] have been shown to better predict tacrolimus AUC. The aim of this study was to determine if these are also better predictors of adverse outcomes in long term liver transplant recipients. The associations between tacrolimus trough concentrations (C-0), non-trough concentrations (C-1, C-2, C-4, C-6/8), and AUC(0-12) and the occurrence of hypertension, hyperkalaemia, hyperglycaemia and nephrotoxicity were assessed in 34 clinically stable liver transplant patients. The most common adverse outcome was hypertension, prevalence of 36%. Hyperkalaemia and hyperglycaemia had a prevalence of 21% and 13%, respectively. A sequential population pharmacokinetic/pharmacodynamic approach was implemented. No significant association between predicted C-0, C-1, C-2, C-4, C-6/8 or AUC(0-12) and adverse effects could be found. Tacrolimus concentrations and AUC measures were in the same range in patients with and without adverse effects. Measures reported to provide benefit, preventing graft rejection and minimizing acute adverse effects in the early post-transplant period, were not able to predict adverse effects in stable adult liver recipients whose trough concentrations were maintained in the notional target range.
Resumo:
Therapeutic monitoring with dosage individualization of sirolimus drug therapy is standard clinical practice for organ transplant recipients. For several years sirolimus monitoring has been restricted as a result of lack of an immunoassay. The recent reintroduction of the microparticle enzyme immunoassay (MEIA (R)) for sirolimus on the IMx (R) analyser has the potential to address this situation. This Study, using patient samples, has compared the MEIA (R) sirolimus method with an established HPLC-tandem mass spectrometry method (HPLC-MS/MS). An established HPLC-UV assay was used for independent cross-validation. For quality control materials (5, 11, 22 mu g/L), the MEIA (R) showed acceptable validation criteria based on intra-and inter-run precision (CV) and accuracy (bias) of < 8% and < 13%, respectively. The lower limit of quantitation was found to be approximately 3 mu g/L. The performance of the immunoassay was compared with HPLC-MS/MS using EDTA whole-blood samples obtained from various types of organ transplant recipients (n = 116). The resultant Deming regression line was: MEIA = 1.3 x HPLC-MS/MS+ 1.3 (r = 0.967, s(y/x) = 1) with a mean bias of 49.2% +/- 23.1 % (range, -2.4% to 128%; P < 0.001). The reason for the large and variable bias was not explored in this study, but the sirolimus-metabolite cross-reactivity with the MEIA (R) antibody could be a substantive contributing factor. Whereas the MEIA (R) sirolimus method may be an adjunct to sirolimus dosage individualization in transplant recipients, users must consider the implications of the substantial and variable bias when interpreting results. In selected patients where difficult clinical issues arise, reference to a specific chromatographic method may be required.